Ouellet-PlamondonChazarencComeauEtAl2006

Référence

Ouellet-Plamondon, C., Chazarenc, F., Comeau, Y. and Brisson, J. (2006) Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecological Engineering, 27(3):258-264.

Résumé

In horizontal subsurface flow constructed wetlands, oxygen availability, which is frequently low in summer, may be even more limiting in winter when the plants are dormant. We tested the contribution of artificial aeration on pollutant removal in summer and winter, with a combination of planted, unplanted, aerated and non-aerated mesocosms treating a reconstituted fish farm effluent. Artificial aeration slightly enhanced TSS removal in all seasons regardless of treatment, probably by maintaining empty space in the head part of the gravel bed. In winter, the reduction in COD removal in non-aerated mesocosms compared to summer was totally compensated for in aerated mesocosms, in both planted and unplanted units. Artificial aeration improved summer and winter TKN removal for unplanted units, but the additional aeration did not fully compensate for the absence of plants, which suggests that the role of macrophytes goes beyond the sole addition of oxygen in the rhizosphere. Artificial aeration also improved TKN removal in planted units, but to a lower extent than for unplanted units. Our results suggest that artificial aeration represents a promising approach to improve removal efficiency in horizontal subsurface flow constructed wetland (HSSFCW), especially for fresh water fish farms in cold climate, where artificial aeration is readily available. © 2006 Elsevier B.V. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { Ouellet-PlamondonChazarencComeauEtAl2006,
    AUTHOR = { Ouellet-Plamondon, C. and Chazarenc, F. and Comeau, Y. and Brisson, J. },
    TITLE = { Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate },
    JOURNAL = { Ecological Engineering },
    YEAR = { 2006 },
    VOLUME = { 27 },
    PAGES = { 258-264 },
    NUMBER = { 3 },
    NOTE = { 09258574 (ISSN) Export Date: 27 April 2007 Source: Scopus CODEN: ECENE doi: 10.1016/j.ecoleng.2006.03.006 Language of Original Document: English Correspondence Address: Brisson, J.; Institut de recherche en biologie ve?ge?tale; Universite? de Montre?al; 4101 Sherbrooke East Montre?al, Que. H1X2B2, Canada; email: jacques.brisson@umontreal.ca References: Allen, W.C., Hook, P.B., Biederman, J.A., Stein, O.R., Temperature and wetland plant species effects on wastewater treatment and root zone oxidation (2002) J. Environ. Qual., 31, pp. 1010-1016; Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W., Beckett, P.M., Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis (2000) Ann. Bot., 86, pp. 687-703; Baptista, J.D.C., Donnely, T., Rayne, D., Davenport, R.J., Microbial mechanisms of carbon removal in subsurface flow wetlands (2002) Water Sci. Technol., 48, pp. 127-134; Bedford, B.L., Boultin, D.R., Beliveau, B.D., Net oxygen and carbon-dioxide balances in solutions bathing roots of wetlands plants (1991) J. Ecol., 79, pp. 943-959; Brix, H., Do macrophytes play a role in constructed treatment wetlands? (1997) Water Sci. Technol., 35, pp. 11-17; Chazarenc, F., Merlin, G., Gonthier, Y., Hydrodynamics of horizontal subsurface flow constructed wetlands (2003) Ecol. Eng., 21, pp. 165-173; Comeau, Y., Brisson, J., Re?ville, J.P., Forget, C., Drizo, A., Phosphorus removal from trout farm effluents by constructed wetlands (2001) Water Sci. Technol., 44, pp. 55-60; Cottingham, P.D., Davies, T.H., Hart, B.T., Aeration to promote nitrification in constructed wetland (1999) Environ. Technol., 20, pp. 69-75; Davies, H.T., Hart, B.T., Use of aeration to promote nitrification in reed beds treating wastewater (1990) Constructed Wetlands in Water Pollution Unplanted, pp. 383-389. , Cooper P.F., and Findlater B.C. (Eds), Pergamon Press, Oxford, UK; Faulkner, S.P., Richardson, C.J., Physical and chemical characteristics of freshwater wetland soils (1989) Constructed Wetlands for Wastewater Treatment, Municipal, Industrial and Agricultural, pp. 41-72. , Hammer D.A. (Ed), Lewis Publishers, Chelsea, MI; He, Q., Mankin, K.R., Seasonal variations in hydraulic performance of rock-plant filters (2001) Environ. Technol., 22, pp. 991-999; ; Jenssen, P.D., Mæhlum, T., Krogstad, T., Potential use of constructed wetlands for wastewater treatment in northern environments (1993) Water Sci. Technol., 28, pp. 149-157; Jenssen, P.D., Mæhlum, T., Krogstad, T., Vra?le, L., High performance constructed wetlands for cold climates (2005) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 40, pp. 1343-1353; Johansson, A.E., Gustavsson, A.-M., Oquist, M.G., Svensson, B.H., Methane emission from a constructed wetland treating wastewater-seasonal and spacial distribution and dependence on edaphic factors (2004) Water Res., 38, pp. 3960-3970; Kadlec, R.H., Knight, R.L., (1996) Treatment Wetlands, , CRC Press L.L.C., Boca Raton, FL; Kadlec, R.H., Reddy, K.R., Temperature effects in treatment wetlands (2001) Water Environ. Res., 73, pp. 543-547; Kuschk, P., Wießner, A., Kappelmeyer, U., Weißbrodt, E., Ka?stner, M., Stottmeister, U., Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate (2003) Water Res., 37, pp. 4236-4242; Machate, T., Noll, H., Behrens, H., Kettrup, A., Degradation of phenanthrene and hydraulic characteristics in a constructed wetland (1997) Water Res., 31, pp. 554-560; Mæhlum, T., Jenssen, P.D., Warner, W.S., Cold-climate constructed wetlands (1995) Water Sci. Technol., 32, pp. 95-101; Mæhlum, T., Sta?lnacke, P., Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: effects of temperature, seasons, loading rates and input concentrations (1999) Water Sci. Technol., 40, pp. 273-281; Mæhlum, T., Jenssen, P.D., Design and performance of integrated subsurface flow wetlands in a cold climate (2002) Constructed Wetlands for Wastewater Treatment in Cold Climates, pp. 69-86. , Mander U., and Jenssen P.D. (Eds), WIT Press, Southampton, UK; (2002) Constructed Wetlands for Wastewater Treatment in Cold Climates. Advances in Ecological Sciences, 11. , Mander U., and Jenssen P.D. (Eds), WIT Press, Southampton, UK; Mander, U., Kuusemets, V., Lo?hmus, K., Mauring, T., Teiter, S., Augustin, J., Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland (2003) Water Sci. Technol., 48, pp. 135-142; Naylor, S., Brisson, J., Labelle, M.A., Drizo, A., Comeau, Y., Treatment of fresh fish farm effluent using CWSs-the role of plants and substrate (2003) Water Sci. Technol., 48, pp. 215-222; Reed, S.C., Brown, D., Subsurface flow wetlands-a performance evaluation (1995) Water Environ. Res., 67, pp. 244-248; Rousseau, D.P.L., Vanrolleghem, P.A., De Pauw, N., Model-based design of horizontal subsurface flow constructed treatment wetlands: a review (2004) Water Res., 38, pp. 1484-1493; Sorrell, B.K., Armstrong, W., On the difficulties of measuring oxygen released by root systems of wetland plants (1994) J. Ecol., 82, pp. 177-183; Spieles, D.J., Mitsch, W.J., The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems (2000) Ecol. Eng., 14, pp. 77-91; ; Stein, O.R., Hook, P.B., Temperature, plants and oxygen: how does season affect constructed wetland performance? (2005) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 40, pp. 1331-1342; Tanner, C.C., Clayton, J.S., Upsdell, M.P., Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands. I. Removal of oxygen demand, suspended solids and faecal coliforms (1995) Water Res., 29, pp. 17-26; Tanner, C.C., Sukias, J.P., Upsdell, M.P., Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters (1998) Water Res., 32, pp. 3046-3054; ; Yang, L., Chang, H.-T., Lo Huang, M.-N.L., Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation (2001) Ecol. Eng., 18, pp. 91-105; Werker, A.G., Dougherty, J.M., McHenry, J.L., Van Loon, W.A., Treatment variability for wastewater treatment design in cold climates (2002) Ecol. Eng., 19, pp. 1-11; Wießner, A., Kuschk, P., Stotmeister, U., Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems (2002) Acta Biotechnol., 22, pp. 209-216; Wu, M., Franz, E.H., Chen, S., Oxygen fluxes and ammonia removal efficiencies in constructed treatment wetlands (2001) Water Environ. Res., 73, pp. 661-666. },
    ABSTRACT = { In horizontal subsurface flow constructed wetlands, oxygen availability, which is frequently low in summer, may be even more limiting in winter when the plants are dormant. We tested the contribution of artificial aeration on pollutant removal in summer and winter, with a combination of planted, unplanted, aerated and non-aerated mesocosms treating a reconstituted fish farm effluent. Artificial aeration slightly enhanced TSS removal in all seasons regardless of treatment, probably by maintaining empty space in the head part of the gravel bed. In winter, the reduction in COD removal in non-aerated mesocosms compared to summer was totally compensated for in aerated mesocosms, in both planted and unplanted units. Artificial aeration improved summer and winter TKN removal for unplanted units, but the additional aeration did not fully compensate for the absence of plants, which suggests that the role of macrophytes goes beyond the sole addition of oxygen in the rhizosphere. Artificial aeration also improved TKN removal in planted units, but to a lower extent than for unplanted units. Our results suggest that artificial aeration represents a promising approach to improve removal efficiency in horizontal subsurface flow constructed wetland (HSSFCW), especially for fresh water fish farms in cold climate, where artificial aeration is readily available. © 2006 Elsevier B.V. All rights reserved. },
    KEYWORDS = { Aeration Cold climate Fish farm effluent Horizontal subsurface flow constructed wetland },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...