BrissonReynolds1997

Référence

Brisson, J. and Reynolds, J.F. (1997) Effects of compensatory growth on population processes: A simulation study. Ecology, 78(8):2378-2384.

Résumé

The spatial extent of the canopy or root system of a plant is often used as an index of its potential to acquire resources, such as water and nutrients. This has given rise to the area of influence (AOI) and neighborhood concepts for quantifying competitive interactions between neighboring plants. Both are based on a circle of fixed radius centered on a plant, which presupposes that two plants in close proximity are always strong competitors. There is evidence that this is not always the case. In this paper, we present a simple model of plant population dynamics that extends the concept of AOI by considering 'compensatory' growth of root systems. The ability of a plant to grow roots into soil zones free of neighbors in response to competitive pressures is expressed by the value of a single parameter, ?. Effects on population attributes resulting from competition in plants with compensatory growth are compared with populations with noncompensatory growth. Simulations show that compensatory plants are better able to utilize available space, have greater biomass, and outcompete noncompensatory plants. The change from a clumped to a regular distribution of individuals due to density-dependent mortality is delayed in noncompensatory plants. These theoretical results suggest that growth plasticity and the resulting asymmetry in space acquisition may play an important role in plant population dynamics.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { BrissonReynolds1997,
    AUTHOR = { Brisson, J. and Reynolds, J.F. },
    TITLE = { Effects of compensatory growth on population processes: A simulation study },
    JOURNAL = { Ecology },
    YEAR = { 1997 },
    VOLUME = { 78 },
    PAGES = { 2378-2384 },
    NUMBER = { 8 },
    NOTE = { 00129658 (ISSN) Cited By (since 1996): 9 Export Date: 27 April 2007 Source: Scopus CODEN: ECOLA Language of Original Document: English Correspondence Address: Brisson, J.; Inst. recherche en biologic vegetale; 4101 rue Sherbrooke est Montreal, Que. H1X 2B2, Canada References: Andersen, D.J., Pattern in desert perennials (1971) Journal of Ecology, 59, pp. 555-560; Armstrong, R.A., A comparison of index-based and pixel-based neighborhood simulations of forest growth (1993) Ecology, 74, pp. 1707-1712; Barbour, M.G., Desert dogma reexamined: Root-shoot production and plant spacing (1973) American Midland Naturalist, 89, pp. 41-57; Bart, J., Acceptance criteria for using individual-based models to make management decisions (1995) Ecological Applications, 5, pp. 411-420; Bella, I.E., A new competition model for individual trees (1971) Forest Science, 17, pp. 364-372; Bonan, G.B., The size structure of theoretical plant populations: Spatial patterns and neighborhood effects (1988) Ecology, 69, pp. 1721-1730; Brisson, J., Reynolds, J.F., The effect of neighbors on root distribution in a creosotebush (Larrea tridentata) population (1994) Ecology, 75, pp. 1693-1702; Cox, G.W., Nearest-neighbor relationships of overlapping circles and the dispersion pattern of desert shrubs (1987) Journal of Ecology, 75, pp. 193-199; Cza?ra?n, T., Bartha, S., Spaliotemporal dynamic models of plant populations and communities (1992) Trends in Ecology and Evolution, 7, pp. 35-69; Daniels, R.F., Burkhart, H.E., Clason, T.R., A comparison of competition measures for predicting growth of loblolly pine trees (1986) Canadian Journal of Forest Research, 16, pp. 1230-1237; De Kroon, H., Mulchings, M.J., Morphological plasticity in clonal plants: The foraging concept reconsidered (1995) Journal of Ecology, 83, pp. 143-152; De Kroon, H., Stuefer, J.F., Dong, M., During, H.J., On plastic and non-plastic variation in clonal plant morphology and its ecological significance (1994) Folia Geobotanica Phytotaxia, Praha, 29, pp. 123-138; Donnelly, K., Simulations to determine the variance and edge-effect of total nearest neighbour distance (1978) Simulation Methods in Archaeology, pp. 91-95. , I. Hodder, editor. Cambridge Univiversity Press, London, UK; Ebert, T.A., McMastcr, G.S., Regular pattern of desert shrubs: A sampling artifact? (1981) Journal of Ecology, 69, pp. 559-564; Firbank, L.G., Watkinson, A.R., A model of interference within plant monocultures (1985) Journal of Theoretical Biology, 116, pp. 291-311; Ford, E.D., Sorrensen, K.A., Theory and models of inter-plant competition as a spatial process (1992) Individual-based Models and Approaches in Ecology, pp. 363-407. , D. L. Angelis and L. J. Gross, editors. Chapman and Hall, New York, New York, USA; Franco, M., The influence of neighbours on the growth of modular organisms with an example from trees (1986) Philosophical Transactions of the Royal Society of London, B, 313, pp. 209-225; Hamilton, D.A., Extending the range of applicability of an individual tree mortality model (1990) Canadian Journal of Forest Research, 20, pp. 1212-1218; Harper, J.L., Modules, branches, and the capture of resources (1985) Population Biology and Evolution of Clonal Organisms, pp. 1-33. , J. B. C. Jackson, L. W. Buss, and R. E. Cook, editors. Yale University Press, New Haven, Connecticut, USA; Hutchings, M.J., Differential foraging for resources and structural plasticity in plants (1988) Trends in Ecology and Evolution, 3, pp. 200-204; Judson, O.P., The rise of the individual-based model in ecology (1994) Trends in Ecology and Evolution, 9, pp. 9-14; Kenkel, N.C., Pattern of self-thinning in jack pine: Testing the random mortality hypothesis (1988) Ecology, 69, pp. 1017-1024; Kenkel, N.C., Spatial competition models for plant populations (1990) Coenoses, 5, pp. 149-158; King, T.J., Woodell, S.R.J., Problems in sampling desert shrubs populations: A comment and correction (1987) Journal of Ecology, 75, pp. 201-202; Kobe, R.K., Pacala, S.W., Silander, J.A., Canham, C.D., Juvenile tree survivorship as a component of shade tolerance (1995) Ecological Applications, 3, pp. 517-532; Leps, J., Kindlmann, P., Models of the development of spatial pattern of an even-aged plant population over time (1987) Ecological Modelling, 39, pp. 45-57; Mack, R.N., Harper, J.H., Interference in dune annuals: Spatial pattern and neighbourhood effects (1977) Journal of Ecology, 65, pp. 345-363; Mahall, B.E., Callaway, R.M., Root communication among desert shrubs (1991) Proceedings of the National Academy of Sciences (USA), 88, pp. 874-876; Monserud, R.A., Simulation of forest tree mortality (1976) Forest Science, 22, pp. 438-444; Ng, F.S.P., Shyness in trees (1980) Naturalia Malaysiana, 2, pp. 34-37; Pacala, S.W., Neighborhood model of plant population dynamics. 1. Single-species models of annuals (1985) American Naturalist, 125, pp. 385-411; Penridge, L.K., (1986) LPOINT: A Computer Program to Simulate a Continuum of Two-dimensional Point Patterns from Regular, Through Poisson, to Clumped, , Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Water and Land Resources, Canberra, Australia; Phillips, D.L., MacMahon, J.A., Competition and spacing patterns of desert shrubs (1981) Journal of Ecology, 69, pp. 97-115; Ross, M.A., Harper, J.L., Occupation of biological space during seedling establishment (1972) Journal of Ecology, 60, pp. 77-88; Schlesinger, W.H., Gray, J.T., Gill, D.S., Mahall, B.E., Ceanothus Magacarpus chaparral: A synthesis of ecosystem processes during development and annual growth (1982) Botanical Review, 48, pp. 71-117; Sinclair, D.F., On tests of spatial randomness using mean nearest neighbor distance (1985) Ecology, 66, pp. 1084-1085; Sorrensen-Cothern, K.A., Ford, E.D., Sprugel, D.G., A model of competition incorporating plasticity through modular foliage and crown development (1993) Ecological Monographs, 63, pp. 277-304; Tome?, M., Burkhart, H.E., Distance-dependent competition measures for predicting growth of individual trees (1989) Forest Science, 35, pp. 816-831; Van Tongeren, O., Prentice, I.C., A spatial simulation model for vegetation dynamics (1986) Vegetatio, 65, pp. 163-173; Weiner, J., Conte, P.T., Dispersal and neighborhood effects in an annual plant competition model (1981) Ecological Modelling, 13, pp. 131-147; Weiner, J., Solbrig, O.T., The meaning and measurement of size hierarchies in plant populations (1984) Oecologia, 61, pp. 334-336; Wu, H., Malafant, K.W.J., Penridge, L.K., Sharpe, P.J.H., Walker, J., Simulation of two-dimensional point patterns: Application of a lattice framework approach (1987) Ecological Modelling, 38, pp. 299-308; Young, T.P., Hubbell, S.P., Crown asymmetry, treefalls, and repeat disturbance of broad-leaved forest gaps (1991) Ecology, 72, pp. 1464-1471. },
    ABSTRACT = { The spatial extent of the canopy or root system of a plant is often used as an index of its potential to acquire resources, such as water and nutrients. This has given rise to the area of influence (AOI) and neighborhood concepts for quantifying competitive interactions between neighboring plants. Both are based on a circle of fixed radius centered on a plant, which presupposes that two plants in close proximity are always strong competitors. There is evidence that this is not always the case. In this paper, we present a simple model of plant population dynamics that extends the concept of AOI by considering 'compensatory' growth of root systems. The ability of a plant to grow roots into soil zones free of neighbors in response to competitive pressures is expressed by the value of a single parameter, ?. Effects on population attributes resulting from competition in plants with compensatory growth are compared with populations with noncompensatory growth. Simulations show that compensatory plants are better able to utilize available space, have greater biomass, and outcompete noncompensatory plants. The change from a clumped to a regular distribution of individuals due to density-dependent mortality is delayed in noncompensatory plants. These theoretical results suggest that growth plasticity and the resulting asymmetry in space acquisition may play an important role in plant population dynamics. },
    KEYWORDS = { Area of influence Competition Larrea tridentata Neighborhood Pixel Self-thinning Simulation model Spatial distribution compensation growth modeling plant population dynamics root Larrea tridentata },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...