PureswaranDeGrandprePareEtAl2015

Référence

Pureswaran, D., De Grandpre, L., Pare, D., Taylor, A., Barrette, M., Morin, H., Regniere, J., Kneeshaw, D.D. (2015) Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology, 96(6):1480-1491.

Résumé

Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects, and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences for the provisioning of goods and services from these forests and for long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. Although spruce budworm outbreak centers have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments, and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species, and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.Read More: http://www.esajournals.org/doi/abs/10.1890/13-2366.1

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { PureswaranDeGrandprePareEtAl2015,
    TITLE = { Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests },
    AUTHOR = { Pureswaran, D. and De Grandpre, L. and Pare, D. and Taylor, A. and Barrette, M. and Morin, H. and Regniere, J. and Kneeshaw, D.D. },
    JOURNAL = { Ecology },
    YEAR = { 2015 },
    NUMBER = { 6 },
    PAGES = { 1480-1491 },
    VOLUME = { 96 },
    ABSTRACT = { Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects, and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences for the provisioning of goods and services from these forests and for long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. Although spruce budworm outbreak centers have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments, and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species, and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.Read More: http://www.esajournals.org/doi/abs/10.1890/13-2366.1 },
    OWNER = { DanielLesieur },
    TIMESTAMP = { 2015.06.10 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...