UngLambertRaulier2005

Référence

Ung, C.-H., Lambert, M.-C., Raulier, F. (2005) Estimating forest boimass using scale linkage from tree to Landsat TM reflectance data. In Proceedings of SPIE - The International Society for Optical Engineering. (Scopus )

Résumé

Estimates of forest biomass are needed to account for carbon at the tree, stand and regional scales. Sample plots of national forest inventories provide the basic database for these estimates. At the tree scale, a common estimation method is the use of an allometric equation that relates a tree's predicted compartment biomass Å·i(i = foliage, branches, stem wood or stem bark) with easily obtained non-destructive measurements, i.e., diameter at breast height (D): Å·i = bilDbi2, or with both D and tree height (H): Å·i = bilD bi2Hbi3, bik being the parameters estimated. A common paradigm observed in biomass literature considers that parameter values vary between stands and regions. At the regional scale, however, when comparing national biomass equations to regional biomass equations, our results showed no significant differences between both types of equation. These results contribute to strengthening the allometric theory as an organizing principle for quantifying the relationship between tree size and biomass across spatial scales. In tandem with the allometry theory, we used a soil-canopy model based on Li-Strahler's approach for up-scaling biomass from the tree to stand scale in a mixed hardwood-coniferous forest. Our results indicated that the shadow fraction of Landsat TM reflectance was correlated with stand biomass. However, this model is indebted with heteroscedasticity, meaning that its error increases appreciably when stand biomass density is high.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@INPROCEEDINGS { UngLambertRaulier2005,
    AUTHOR = { Ung, C.-H. and Lambert, M.-C. and Raulier, F. },
    TITLE = { Estimating forest boimass using scale linkage from tree to Landsat TM reflectance data },
    BOOKTITLE = { Proceedings of SPIE - The International Society for Optical Engineering },
    YEAR = { 2005 },
    VOLUME = { 5976 },
    PAGES = { -- },
    ABSTRACT = { Estimates of forest biomass are needed to account for carbon at the tree, stand and regional scales. Sample plots of national forest inventories provide the basic database for these estimates. At the tree scale, a common estimation method is the use of an allometric equation that relates a tree's predicted compartment biomass Å·i(i = foliage, branches, stem wood or stem bark) with easily obtained non-destructive measurements, i.e., diameter at breast height (D): Å·i = bilDbi2, or with both D and tree height (H): Å·i = bilD bi2Hbi3, bik being the parameters estimated. A common paradigm observed in biomass literature considers that parameter values vary between stands and regions. At the regional scale, however, when comparing national biomass equations to regional biomass equations, our results showed no significant differences between both types of equation. These results contribute to strengthening the allometric theory as an organizing principle for quantifying the relationship between tree size and biomass across spatial scales. In tandem with the allometry theory, we used a soil-canopy model based on Li-Strahler's approach for up-scaling biomass from the tree to stand scale in a mixed hardwood-coniferous forest. Our results indicated that the shadow fraction of Landsat TM reflectance was correlated with stand biomass. However, this model is indebted with heteroscedasticity, meaning that its error increases appreciably when stand biomass density is high. },
    COMMENT = { Export Date: 8 June 2009 Source: Scopus Art. No.: 59761C CODEN: PSISD doi: 10.1117/12.626416 },
    ISSN = { 0277786X (ISSN) },
    KEYWORDS = { Bias, Biomass allometric equation, Carbon accounting, Error, Shadow fraction, Carbon, Data acquisition, Database systems, Error analysis, Parameter estimation, Satellite communication systems, Bias, Biomass allometric equation, Carbon accounting, Shadow fraction, Biomass },
    OWNER = { Luc },
    TIMESTAMP = { 2009.06.08 },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-33244493145&partnerID=40 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...