NaydenovTremblayAlexandrovEtAl2005

Référence

Naydenov, K.D., Tremblay, M.F., Alexandrov, A. and Fenton, N.J. (2005) Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 33(12):1226-1245.

Résumé

In the present study we investigated the genetic structure and genetic diversity of Pinus sylvestris populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. We were interested in addressing the following questions: (1) can population structure in Scots pine be detected via chloroplast microsatellites markers and terpenes; (2) are there differences in population differentiation between the two analyses; and (3) how are the patterns related to geographic distances. Twelve provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using six primer pairs. Between 4 to 8 size variants were identified at each locus. A total of 35 size variants at the six loci were identified, 11 occurring at low frequencies (<1%). They were combined in 134 different haplotypes, of which seven represent 1/3 of the genetic structure. AMOVA analysis revealed that 10.99% of the variation was found among populations, while 89.01% was expressed within populations. The cpSSR analysis divided Scots pine populations into two groups, the first represented by populations located in the south-western part of the Rhodopes and Pirin mountains, while the second group is located in the northeast of Rhodopes and Rila mountains. Terpene analysis revealed that on average, 53% of the monoterpene pool in P. sylvestris was accounted for by ?-pinene (range 47-59%) followed by ?-pinene (range 6-12%). The presence of two distinct groups is weekly consistent with physical distances between populations, similar significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance (determined by terpenes) was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in Scots pine populations is the consequence of historical biogeographic processes. © 2005 Elsevier Ltd. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { NaydenovTremblayAlexandrovEtAl2005,
    AUTHOR = { Naydenov, K.D. and Tremblay, M.F. and Alexandrov, A. and Fenton, N.J. },
    TITLE = { Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests },
    JOURNAL = { Biochemical Systematics and Ecology },
    YEAR = { 2005 },
    VOLUME = { 33 },
    PAGES = { 1226-1245 },
    NUMBER = { 12 },
    NOTE = { 03051978 (ISSN) Cited By (since 1996): 2 Export Date: 27 April 2007 Source: Scopus CODEN: BSECB doi: 10.1016/j.bse.2005.07.011 Language of Original Document: English Correspondence Address: Naydenov, K.D.; CRSNG-UQAT-UQAM en Ame?nagement Forestier Durable; Universite? du Que?bec en Abitibi-Te?miscamingue; 445 boul. de l'Universite? Rouyn-Noranda, Que. J9X 5E4, Canada; email: krassimirdn@hotmail.com References: Adams, R., Systematic of multi-seeded eastern hemisphere Juniperus based of leaf essential oils and RAPD DNA fingerprinting (1999) Biochem. Syst. Ecol., 27, pp. 709-725; Adams, R., Systematics of smooth leaf margin Juniperus of the western hemisphere based of leaf essential oils and RAPD DNA fingerprinting (2000) Biochem. Syst. Ecol., 28, pp. 149-162; Adams, R., Systematics of Juniperus section Juniperus based of leaf essential oils and RAPD DNA fingerprinting (2000) Biochem. Syst. Ecol., 28, pp. 515-528; Adams, R., Systematics of the one seeded Juniperus of the eastern hemisphere based of leaf essential oils and RAPD DNA fingerprinting (2000) Biochem. Syst. Ecol., 28, pp. 529-543; Adams, R., The serrate leaf margined Juniperus (Section Sabina) of the western hemisphere: Systematic and evolution based on leaf essential oil and random amplified polymorphic DNAs (RAPDs) (2000) Biochem. Syst. Ecol., 28, pp. 975-989; Adams, R., Schwarzbach, A., Pandey, R., The concordance of terpenoid, ISSR and RAPD markers, and UTS sequence data set among genotypes: An example from Juniperus (2003) Biochem. Syst. Ecol., 31, pp. 375-387; Alexandrov, A., Rafailov, G., Nedelin, G., Canov, K., Bogdanov, B., Spasov, C., (1988) Coniferous Forest in Bulgaria, , Zemizdat Sofia (Bulgaria); Alexandrov, A., Genetic conservation of conifers in Bulgaria (2000) J. Balkan Ecol., 3, pp. 5-10; Belkhir, K., (2002) Genetix Ver 4.01: A Software for Population Genetics Data Analysis, , Laboratoire Genome et populations, Universite de Montpellier II France; Bocherini, G., Michelozzi, M., Gas-chromatography of terpene composition of Picea abies K. (1993) XV-th International Symposium on Capillary Chromatography - May 1993, Riva del Garda, Italy, 2, pp. 1329-1334. , P. Sandra G. Devos Dr. Alfred Huethig Publishing GmbH Heidelberg-Germany; Bonnin, I., Prosperi, J.-M., Olivieri, I., Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminisa): A comparative analysis of population structure (1996) Genetics, 143, pp. 1795-1805; Bucci, G., Vendramin, G.G., Delineation of genetic zone in the European Norway spruce natural range: Preliminary evidence (2000) Mol. Ecol., 9, pp. 923-934; Butlin, R., Tregenza, T., Levels of genetic polymorphism: Marker loci versus quantitative traits (1998) Philos. Transact. R. Soc. Lond. B, Biol. Sci., 353, pp. 187-198; Chang, J., Hanover, J., Geographic variation in the monoterpene composition of Black Spruce (1991) Can. J. For. Res., 21, pp. 1796-1800; Critchfield, W.B., Little, E.L., (1966) Geographic Distribution of the Pines of the World, , U.S. Department of Agriculture Washington; Dobrinov, I., Form trees variability of the coniferous forest in Bulgaria (1957) Forest Manage. (Bulgaria), 10; Dobrinov, I., (1960) Scots Pine Ecoform Investigation in Bulgaria, , PhD Thesis of Forest Genetic, Selection and Tree Breeding. University of Forestry, Sofia, Bulgaria; Dobrinov, I., Forms diversity in natural Scots pine population in Bulgaria (1961) Nauchni Trudove Na VLTI (Sofia, Bulgaria), 9, pp. 5-19; Dobrinov, I., Crown Scots pines forms diversity in Bulgaria (1963) Forest Manage. (Bulgaria), 2, pp. 4-8; Dobrinov, I., Correlation between the growth and seeds origin of Scots pines in Bulgaria (1965) Forest Manage. (Bulgaria), 5, pp. 16-19; Dobrinov, I., Raport of natural hybrid between Scots pine (Pinus sylvestris L.) and Mountain pine (Pinus montana var. mughus Willk.) in Bulgaria (1965) Nauchni Trudove Na VLTI (Sofia, Bulgaria), 13; Dobrinov, I., Kalinkov, V., Investigation of Scots pine growth in Provenance test - First results (1968) Conferencia Po Sluchai 50 Godini Velika Oktomvriska Revolucia, pp. 119-129. , Sofia (Bulgaria); Dobrinov, I., Kalinkov, V., Investigation of Scots pine growth in Provenance test (1969) Nauchna Sesia Posvetena Na Desetmilionnia Dekar, pp. 36-48. , Sofia (Bulgaria); Dobrinov, I., Gagov, V., Herabilite and correlation between the cone, seed and growth Scots pine characteristics (1970) Nauchni Trudove Na VLTI (Sofia, Bulgaria), 18, pp. 37-46; Dobrinov, I., Kalinkov, V., Growth characteristic of Scots pine in provenance test (1972) Conferencia Po Povichavane Proizvoditelnostta Na Iglolistnite Gori V Bulgaria, pp. 15-18. , Sofia (Bulgaria); Dobrinov, I., Kalinkov, V., Scots pine cone and seed variability in Bulgaria (western Rhodope maintain) (1972) Conferencia Po Povichavane Proizvoditelnostta Na Iglolistnite Gori V Bulgaria, pp. 25-28. , Sofia (Bulgaria); Dobrinov, I., Kalinkov, V., Growth characteristic of Scots pine in provenance test (1977) Nauchni Trudove Na VLTI (Sofia, Bulgaria), 22, pp. 31-38; Dobrinov, I., Doykov, G., Gagov, V., (1982) Forest Genetic Pool in Bulgaria, , Zemizdat Sofia (Bulgaria); Dobrinov, I., (1983) Genetic and Selection of Forest Tree, , Zemizdat Sofia (Bulgaria); Dobrinov, I., Scots Pine Seed Transfer Zones (1983) Forest Manage. (Bulgaria), 7, pp. 6-8; Dobrinov, I., Uzunova, A., Christova, P., Investigation of growth and anatomical characteristics of Scots pine populations in provenance test (1984) Balkanska Nauchna Conferencia, pp. 143-148. , Sofia (Bulgaria); Epperson, B., Fine-scale spatial structure: Correlations for individual genotypes differ from those for local gene frequencies (1995) Evolution, 49, pp. 1022-1026; Epperson, B., Li, T., Measurement of genetic structure within populations using Moran's spatial autocorrelation statistics (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 10528-10532; Excoffier, L., Smouse, P., Quattro, J., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491; Excoffier, L., Schneider, S., Roessli, D., (2002) Arlequin Ver 2.001: A Software for Population Genetics Data Analysis, , Department of Anthropology and Ecology, University of Geneva Switzerland; Fady, B., Arbez, M., Marpeau, A., Geographic variability of terpene composition in Abies cephalonica London and Abies species around the Aegean: Hypotheses for their possible phylogeny from the Miocene (1992) Trees, 6, pp. 162-171; Forrest, G., Genotypic variation among native Scots pine population in Scotland based on monoterpene analysis (1990) Forestry, 53, pp. 101-128; Goncharenko, G.G., Silin, A.E., Padulov, V.E., Allozyme variation in natural populations of Eurasian pines. III. Population structure, diversity, differentiation and gene flow in central and isolated populations of Pinus sylvestris L. in Eastern Europe and Siberia (1994) Silvae Genet., 43, pp. 119-132; Goncharenko, G.G., Silin, A.E., (1997) Population and Evolutionary Genetics of Pine in Eastern Europe and Siberia, , Technalohija Minsk; Gullberg, U., Yazdani, R., Rudin, Genetic differentiation between adjacent populations of Pinus sylvestris (1982) Silva Fenn., 16, pp. 205-214; Gullberg, U., Yazdani, R., Rudin, D., Ryman, N., Allozyme variation in Scots pine (Pinus sylvestris L.) in Sweden (1985) Silvae Genet., 34, pp. 193-201; Huttunen, A., Huttunen, R., Vasari, R., Panovska, H., Bozilova, E., Late-glacial and Holocene history of flora and vegetation in the western Rhodopes mountains, Bulgaria (1992) Acta Bot. Fenn., 144, pp. 63-80; Jaramillo-Correa, J., Beaulieu, J., Bousquet, J., Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce (2001) Mol. Ecol., 10, pp. 2729-2740; Kalendar, R., (2002) Oligo 9.9. (Windows NT) [Computer Program Manual], , http://www.biocenter.helsinki.fi, Institute of Biotechnology, University of Helsinki Finland; Karhu, A., Hurme, P., Karjalainen, M., Karvonen, P., Karkkaunen, K., Neale, D., Savolainen, O., Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? (1996) Theor. Appl. Genet., 93, pp. 215-221; Kinloch, B.B., Westfall, R.D., Forrest, G.I., Caledonian Scots pine: Origins and genetic structure (1986) New Phytol., 104, pp. 703-729; Klika, J., Novak, F.A., (1953) Jehlicnate, , Praha; Kostov, K., Alexandrov, A., Dakev, T., Arabov, A., Cankov, G., Scots pine provenance growth and resistance (1986) Forest Manage. (Bulgaria), 4, pp. 3-11; Kuittinen, H., Mattila, A., Savolainene, O., Genetic variation at marker loci and in quantitative traits in natural populations of Arabidopsis thaliana (1997) Heredity, 79, pp. 144-152; Latta, R., Linhart, Y., Mitton, J., Cytonuclear disequilibrium and genetic drift in a natural population of ponderosa pine (2001) Genetics, 158, pp. 843-850; Latta, R., Linhart, Y., Snyder, M., Lundquist, L., Patterns of variation and correlation in the monoterpene composition of xylem oleoresin within populations of ponderosa pine (2003) Biochem. Syst. Ecol., 31, pp. 451-465; Levin, R., McDate, L., Raguso, R., The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae (2003) Syst. Biol., 52, pp. 334-351; Longauer, R., Zhelev, P., Paule, L., Gomory, D., The mating system out-crossing rate and genetic differentiation in two indigenous Scots pine (Pinus sylvestris L.) populations from Bulgaria (1992) Biologia (Bratislava, Slovak Rep.), 47, pp. 539-547; Lynch, M., Pfrender, M., Spitze, K., The quantitative and molecular genetic architecture of a subdivided species (1999) Evolution, 53, pp. 100-110; Mantel, N., The detection of disease clustering and a generalized regression approach (1967) Cancer Res., 27, pp. 209-220; Marshall, H., Newton, C., Ritland, K., Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (Pinus contorta) (2002) Theor. Appl. Genet., 104, pp. 367-372; McCauley, D., Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: Implications for studies of gene flow in plants (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 8127-8131; Mejnartowicz, L., Genetic variation in some isoenzyme loci in Scots pine (Pinus silvestris L.) populations (1979) Arbor. Kornickie (Poland), 24, pp. 91-104; Michalakis, Y., Excoffier, L., A generic estimate of population subdivision using distances between size variants with special reference to microsatellite loci (1996) Genetics, 142, pp. 1061-1064; Mitton, J., Kreiser, B., Latta, R., Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA (2000) Mol. Ecol., 9, pp. 91-97; Muona, O., Szmidt, A.E., A multilocus study of natural populations of Pinus sylvestris (1985) Population Genetics in Forestry. Lecture Notes in Biomathematics, 60, pp. 226-240. , H.-R. Gregorius; Muona, O., Yazdani, R., Rudin, D., Genetic change between life stages in Pinus sylvestris: Allozyme variation in seeds and planted seedlings (1987) Silvae Genet., 36, pp. 39-42; Muona, O., Haju, A., Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris (1989) Silvae Genet., 38, pp. 221-228; Naydenov, K., Velkov, D., Alexandrov, A., Genov, K., Asparuchova, E., Iliev, I., (1993) Research of Chemiphenotipic Variation of Representatives of Gender PINUS in Regards to Their Saving - Rapport N CC-318/93 NFNI-MONT, , Bulgaria; Naydenov, K., Markov, G., Variability and similarity of the terpene compositions of the essential oils in natural stands in Bulgaria of palebark heldreichii pine (Pinus heldreichii Christ.) (1995) Biochemical Markers in the Population Genetics of Forests Trees, pp. 165-170. , Ph. Baradat T. Adams G. Muller-Starck SPB Academic Publishing Amsterdam, The Netherlands; Naydenov, K.D., Co-relationship between terpenes in the essential oil of Palebark Heldreichii pine (Pinus heldreichii Christ.), determined through CGC in different provenances in Bulgaria (1996) XVIII-th International Symposium on Capillary Chromatography - May 1996, Riva del Garda, Italy, 2, pp. 1247-1251. , P. Sandra G. Devos Dr. Alfred Huethig Publishing GmbH Heidelberg-Germany; Naydenov, K.D., Co-relationship between terpenes in the essential oil of Scotch pine Pinus sylvestris L., determined through CGC in different provenances in Bulgaria (1996) XVIII-th International Symposium on Capillary Chromatography - May 1996, Riva del Garda, Italy, 2, pp. 1242-1246. , P. Sandra G. Devos Dr. Alfred Huethig Publishing GmbH Heidelberg-Germany; Naydenov, K., (1998) Phenotypic Diversity in Some Populations of Scots Pine (Pinus Sylvestris L.) in the Rila, Pirin and the Rhodopes Mountains, Determined by Gas-chromatography of Terpenes, , PhD Thesis of Forest Genetic, Selection and Tree Breeding. Bulgarian Academy of Sciences, Sofia, Bulgaria; Neet-Sarqueda, C., Genetic differentiation of Pinus sylvestris (L.) and Pinus mugo (Aggr.) Populations in Switzerland (1994) Silvae Genet., 43, pp. 207-215; Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals (1978) Genetics, 89, pp. 583-590; Orive, M., Asmussen, M., The effects of pollen and seed migration on nuclear-dicytoplasmic systems. II. a new method for estimating plant gene flow from joint nuclear-cytoplasmic data (2000) Genetics, 155, pp. 833-854; Ozenda, P., Sur les e?tages de ve?ge?tation dans les montagnes du bassin me?diterrane?en. Documents Cartographique Ecologiques (1975) (Grenoble, France), 16, pp. 1-32; Ozenda, P., (1985) La Ve?ge?tation de la Chai?ne Alpine Dans l'Espace Montagnard Europe?en, , Masson Paris, France; Petit, R., Bahrman, N., Baradat, Ph., Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci (1995) Heredity, 75, pp. 382-389; Powell, W., Morgante, M., McDevitt, R., Vendramin, G., Rafalski, J., Polymorphic simple sequence repeat regions in chloroplast genomes application to the populations genetics of pines (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 7759-7763; Pravdin, L.F., (1964) Scots Pine-Variability, Intra Species Taxonomy and Selection, , Nauka Moscow, USSR; Provan, J., Soranzo, N., Wilson, N.J., McNicol, J.W., Forrest, G.I., Cottrell, J., Powell, W., Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats (1998) Proc. R. Soc. Lond., 265, pp. 1697-1705; Prus-Glowacki, W., Bernard, E., Allozyme variation in populations of Pinus sylvestris L. from a 1912 provenance trial in Pulawy (Poland) (1994) Silvae Genet., 43, pp. 132-138; Ribeiro, M., Mariette, S., Vendramin, G., Szmidt, E., Plomion, C., Kremer, A., Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data (2002) Mol. Ecol., 11, pp. 869-877; Rogers, A., Population differences in quantitative characters as opposed to gene frequencies (1986) Am. Nat., 127, pp. 729-730; Rosnev, B., (1968) Scots Pine Phenotypic Variability in Rila Mountain, , PhD Thesis of Forest Genetic, Selection and Tree Breeding. Bulgarian Academy of Sciences, Sofia, Bulgaria; Rubner, K., (1925) Die Pflanzengeographischen Grundlagen des Waldbaus; Rudin, D., Eriksson, G., Ekberg, I., Rasmuson, M., Studies of allele frequencies and inbreeding in Scots pine populations by the aid of the isozyme technique (1974) Silvae Genet., 23, pp. 10-13; Sandra, P., Bicchi, C., (1987) Capillary Gas Chromatography in Essential Oil Analysis, , Dr. Alfred Huethig Publishing GmbH Heidelberg-Germany; Schonwitz, R., Kloos, M., Merk, L., Zeigler, H., Patterns of monoterpenes stored in the needles of Picea abies (Karst.) from several locations in mountainous regions of Southern Germany (1990) Trees, 4, pp. 27-33; Slatkin, M., Gene flow and geographic structure of natural populations (1987) Science (Washington, DC), 236, pp. 787-792; Slatkin, M., Barton, N., A comparison of three indirect methods for estimating average levels of gene flow (1989) Evolution, 43, pp. 1349-1368; Slatkin, M., A measure of population subdivision based on microsatellite allele frequencies (1995) Genetics, 139, pp. 457-462; Spitze, K., Population structure in Daphnia obtusa: Quantitative genetics and allozymic variation (1993) Genetics, 135, pp. 367-374; (1999) STATISTICA for Windows [Computer Program Manual], , http://www.statsoft.com, 1999 StatSoft, Inc; Stefanov, B., (1941) Geographical Distribution of Coniferous Species and Their Form in Nature, 1920. , Godichnik na Sofiiskia Darjaven Universitet Sofia, Bulgaria; Stefanov, B., (1943) The Phyto-geographical Elements of Bulgaria, 39, pp. N19. , Thesis of Bulgarian Academy of Sciences, Faculty of Nature and Mathematics, Sofia, Bulgaria; Strauss, S., Hong, Y.-P., Hipkins, V., High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata and attenuata (1993) Theor. Appl. Genet., 86, pp. 605-611; Svoboda, R., (1953) Lesni Dreviny a Yejich Porosti, , Cast I, Praha; Svoboda, R., (1955) Lesni Dreviny a Yejich Porosti, , Cast I, Praha; Szmidt, A.E., Wang, X.-R., Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and Pinus densiflora (Sieb. et Zucc.) (1993) Theor. Appl. Genet., 86, pp. 159-165; Szweykowski, J., Prus-Glowacki, W., Hrynkiewicz, J., The genetic structure of Scots pine (Pinus sylvestris L.) population from the top of Szczeliniec Wielki Mt., Central Sudetes (1994) Acta Soc. Bot. Pol., 63, pp. 315-324; Vendramin, G., Lelli, L., Rossi, P., Morgante, M., A set of primer for the amplification of 20 chloroplast microsatellites in Pinaceae (1996) Mol. Ecol., 5, pp. 585-598; Vendramin, G., Anzidei, M., Madaghiele, A., Bucci, G., Distribution of genetic diversity in Pinus pinaster (Ait.) as revealed by chloroplast microsatellites (1998) Theor. Appl. Genet., 97, pp. 456-463; Vendramin, G., Degen, B., Petit, R., Anzidel, M., Madaghiele, A., Ziegenhagen, B., High level of variation of Abies alba chloroplast microsatellite loci in Europe (1999) Mol. Ecol., 8, pp. 1117-1128; Vendramin, G., Anzidei, M., Madaghiele, A., Sperisen, C., Bucci, G., Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.) (2000) Genome, 43, pp. 68-78; Walter, R., Epperson, B., Geographic pattern of genetic variation in Pinus resinosa area of greatest diversity is not the origin of postglacial populations (2001) Mol. Ecol., 10, pp. 103-111; Wang, X.-R., Szmidt, A.E., Lindgren, D., Allozyme differentiation among populations of Pinus sylvestris (L.) from Sweden and China (1991) Hereditas, 114, pp. 219-226; Weir, B., Cockerham, C., Estimating F-statistics for the analysis of population structure (1984) Evolution, 38, pp. 1123-1128; Yang, R.-C., Yeh, F., Tanchuk, A., A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by Fst. (1996) Genetics, 142, pp. 1045-1052; Zhelev, P., (1992) Ecolo-biological and Selection-genetic Scots Pine Investigations from the Rhodopi Mountains, , PhD Thesis of Forest Genetic, Selection and Tree Breeding. University of Forestry, Sofia, Bulgaria; Zhelev, P., Longauer, R., Ladislav, P., Gomory, D., Genetic variation of the indigenous Scots pine (Pinus sylvestris L.) populations from the Rhodopi mountains (1994) Forest Sci. (Bulgaria), 3, pp. 68-76; Zheng, Y., Ennos, R., Genetic variability and structure of natural and domesticated populations of Caribbean pine (Pinus caribaea Morelet.) (1999) Theor. Appl. Genet., 98, pp. 765-771. },
    ABSTRACT = { In the present study we investigated the genetic structure and genetic diversity of Pinus sylvestris populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. We were interested in addressing the following questions: (1) can population structure in Scots pine be detected via chloroplast microsatellites markers and terpenes; (2) are there differences in population differentiation between the two analyses; and (3) how are the patterns related to geographic distances. Twelve provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using six primer pairs. Between 4 to 8 size variants were identified at each locus. A total of 35 size variants at the six loci were identified, 11 occurring at low frequencies (<1%). They were combined in 134 different haplotypes, of which seven represent 1/3 of the genetic structure. AMOVA analysis revealed that 10.99% of the variation was found among populations, while 89.01% was expressed within populations. The cpSSR analysis divided Scots pine populations into two groups, the first represented by populations located in the south-western part of the Rhodopes and Pirin mountains, while the second group is located in the northeast of Rhodopes and Rila mountains. Terpene analysis revealed that on average, 53% of the monoterpene pool in P. sylvestris was accounted for by ?-pinene (range 47-59%) followed by ?-pinene (range 6-12%). The presence of two distinct groups is weekly consistent with physical distances between populations, similar significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance (determined by terpenes) was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in Scots pine populations is the consequence of historical biogeographic processes. © 2005 Elsevier Ltd. All rights reserved. },
    KEYWORDS = { Biogeography Chloroplast microsatellites Pinus sylvestris L. (syn. Pinus silvestris L.) Population differentiation Scots pine (syn. Scotch pine) Terpenes biogeography genetic structure genetic variation population structure terpene Bulgaria Eastern Hemisphere Eurasia Europe Southern Europe World Pinus silvestris Pinus sylvestris },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...