LaliberteNortonTylianakisEtAl2010

Référence

Laliberté, E., Norton, D.A., Tylianakis, J.M. and Scott, D. (2010) Comparison of two sampling methods for quantifying changes in vegetation composition under rangeland development. Rangeland Ecology and Management, 63(5):537-545. (Scopus )

Résumé

Rapid vegetation sampling methods based on visual estimation are useful for monitoring changes in rangeland vegetation composition because large spatial and temporal scales are often involved and have limited sampling resources available. Here we compared two sampling methods in their ability to detect changes in vegetation composition following rangeland development: 1) species percent cover estimates within subplots (the percent cover PC method) and 2) rankings of relative biomass of the 10 most abundant species across the whole plot and the ratio of two of them (the visual ranking VR method). Both methods were applied on 30 experimental plots at year 26 of a long-term factorial trial of five soil fertility levels and three sheep grazing intensities. Multivariate statistical methods showed significant effects of experimental treatments (fertilizer level and sheep grazing intensity) and of vegetation sampling method (VR vs. PC) on vegetation composition. Importantly, we detected no significant interactions involving sampling method, indicating that the effect of sampling method was consistent across experimental treatments. Effects of fertilizer on vegetation composition were an order of magnitude greater than the effect of sampling method, whereas the latter was twice as important as the effect of grazing. Results were robust to differential weights given to relative abundances vs. compositional changes. Differences between methods were primarily driven by the PC method giving lower abundance estimates of one species, lupin (a hybrid of Lupinus polyphyllus Lindl.), relative to the VR method. Our results support the use of the VR method as a rapid yet powerful method for monitoring changes in vegetation composition under rangeland development. © 2010 Society for Range Management.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { LaliberteNortonTylianakisEtAl2010,
    AUTHOR = { Laliberte, E. and Norton, D.A. and Tylianakis, J.M. and Scott, D. },
    TITLE = { Comparison of two sampling methods for quantifying changes in vegetation composition under rangeland development },
    JOURNAL = { Rangeland Ecology and Management },
    YEAR = { 2010 },
    VOLUME = { 63 },
    PAGES = { 537-545 },
    NUMBER = { 5 },
    NOTE = { cited By 7 },
    ABSTRACT = { Rapid vegetation sampling methods based on visual estimation are useful for monitoring changes in rangeland vegetation composition because large spatial and temporal scales are often involved and have limited sampling resources available. Here we compared two sampling methods in their ability to detect changes in vegetation composition following rangeland development: 1) species percent cover estimates within subplots (the percent cover PC method) and 2) rankings of relative biomass of the 10 most abundant species across the whole plot and the ratio of two of them (the visual ranking VR method). Both methods were applied on 30 experimental plots at year 26 of a long-term factorial trial of five soil fertility levels and three sheep grazing intensities. Multivariate statistical methods showed significant effects of experimental treatments (fertilizer level and sheep grazing intensity) and of vegetation sampling method (VR vs. PC) on vegetation composition. Importantly, we detected no significant interactions involving sampling method, indicating that the effect of sampling method was consistent across experimental treatments. Effects of fertilizer on vegetation composition were an order of magnitude greater than the effect of sampling method, whereas the latter was twice as important as the effect of grazing. Results were robust to differential weights given to relative abundances vs. compositional changes. Differences between methods were primarily driven by the PC method giving lower abundance estimates of one species, lupin (a hybrid of Lupinus polyphyllus Lindl.), relative to the VR method. Our results support the use of the VR method as a rapid yet powerful method for monitoring changes in vegetation composition under rangeland development. © 2010 Society for Range Management. },
    AUTHOR_KEYWORDS = { community composition; monitoring; rangeland assessment; vegetation sampling; visual ranking },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.2111/REM-D-09-00156.1 },
    KEYWORDS = { community composition; comparative study; fertilizer application; fieldwork; grazing pressure; herb; monitoring; multivariate analysis; phytomass; quantitative analysis; rangeland; sampling; sheep; spatiotemporal analysis; vegetation cover; visual analysis, Lupinus polyphyllus; Ovis aries },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-77957220799&partnerID=40&md5=87a48a47a6c2270dca92b3478f24f989 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...