Despland2003

Reference

Despland, E. (2003) Fractal index captures the role of vegetation clumping in locust swarming. Functional Ecology, 17(3):315-322.

Abstract

1. This paper evaluates box-counting dimension as a quantitative clumping index for discontinuous plant cover, and applies it to studies of both small- and large-scale ecological processes in desert locust (Schistocerca gregaria) swarming. 2. The quadrat under study is tiled with squares of increasing size, and the relationship between the number of occupied squares and square size gives the box-counting dimension. This index is high for random distributions and decreases when the vegetation is clumped; it is also positively linked to the abundance of vegetation. 3. At the scale of individual locusts, this index captures the space-filling properties of vegetation that promote change to the gregarious phase and the onset of swarming. At the very large scale, box-counting dimension measured from satellite imagery reflects topography, which influences the concentration and migration of locust swarms. 4. Fractal geometry considers scale of measurement in quantifying pattern and provides a framework to interpret ecological phenomena across spatial scales. Demonstration of a statistically significant relationship between the box-counting exponent and locust behaviour shows how this approach can be applied to ecological studies.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { Despland2003,
    AUTHOR = { Despland, E. },
    TITLE = { Fractal index captures the role of vegetation clumping in locust swarming },
    JOURNAL = { Functional Ecology },
    YEAR = { 2003 },
    VOLUME = { 17 },
    PAGES = { 315-322 },
    NUMBER = { 3 },
    NOTE = { 02698463 (ISSN) Cited By (since 1996): 5 Export Date: 27 April 2007 Source: Scopus CODEN: FECOE Language of Original Document: English Correspondence Address: Despland, E.; Department of Zoology; University of Oxford Oxford OX1 3PS, United Kingdom; email: emma.despland@alcor.concordia.ca References: (1994) ARTEMIS: Africa Real Time Environmental Monitoring Information System, , Technical Report. FAO, Accra, Ghana; Baveye, P., Boast, C., Ogawa, S., Parlange, J.-Y., Steenhuis, T., Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils (1998) Water Resources Research, 34, pp. 2783-2796; Broomhead, D., Fractals (1985) Proceedings of the Fifth International Symposium on Continuum Models of Discrete Systems, Nottingham, UK, pp. 27-34. , ed. A. Spencer. A.A. Balkema, Rotterdam; Collett, M., Despland, E., Simpson, S., Krakauer, D., The spatial scales of desert locust gregarisation (1998) Proceedings of the National Academy of Science, 95, pp. 13052-13055; DeCola, L., Fractal analysis of a classified landsat scene (1989) Photogrammetric Engineering and Remote Sensing, 55, pp. 601-610; Despland, E., Simpson, S., The role of food distribution and nutritional quality in behavioural phase change in the Desert Locust (2000) Animal Behaviour, 59, pp. 643-652; Despland, E., Simpson, S., Small-scale vegetation patterns in the parental environment influence the phase state of hatchlings of the Desert Locust (2000) Physiological Entomology, 25, pp. 1-9; Despland, E., Collett, M., Simpson, S., Small-scale processes in Desert Locust swarm formation: How vegetation patterns influence gregarisation (2000) Oikos, 88, pp. 652-662; El-Hadi, M.O.T., (1996) Variabilite? des Biotopes a? l'Interface Plantes/Schistocerca gregaria (Forska?l) (Orthoptera: Acrididae) en Mauritanie, , The?se doctorale, Universite? Paris-Sud, France; Fortin, M., Spatial statistics in landscape ecology (1999) Landscape Ecological Analysis: Issues and Applications, pp. 253-279. , eds J. Klopatek \& R. Garden. Springer-Verlag, New York, London; Gee, J., Warwick, R., Metazoan community structure in relation to the fractal dimensions of marine macroalgae (1994) Marine Ecology Progress Series, 103, pp. 141-150; Gunnarsson, B., Fractal dimension of plants and body size distribution in spiders (1992) Functional Ecology, 6, pp. 636-641; Hall, P., Wood, A., On the performance of box-counting estimators of fractal dimension (1993) Biometrika, 80, pp. 246-252; Haslett, J., Community structure and the fractal dimensions of mountains habitats (1994) Journal of Theoretical Biology, 167, pp. 407-411; Hastings, H., Sugihara, G., (1993) Fractals: A User's Guide for the Natural Sciences, , Oxford University Press, Oxford; Hastings, H., Schneider, B., Schreiber, M., Gorray, K., Maytal, G., Maimon, J., Statistical geometry of pancreatic islets (1992) Proceedings of the Royal Society of London B, 250, pp. 257-261; Van Hees, W., A fractal model of vegetation complexity in Alaska (1994) Landscape Ecology, 94, pp. 271-278; Hielkema, J., Satellite environmental monitoring for migrant pest forecasting by FAO: The ARTEMIS system (1990) Philosophical Transactions of the Royal Society of London B, 328, pp. 705-717; Hielkema, J., Roffey, J., Tucker, C., Assessment of ecological conditions associated with the 1980/1981 desert locust plague upsurge in West Africa using environmental satellite data (1986) International Journal of Remote Sensing, 7, pp. 1609-1622; Huete, A., A soil adjusted index (SAVI) (1988) Remote Sensing of Environment, 25, pp. 295-309; Johnson, A., Milne, B., Wiens, J., Diffusion in fractal landscapes: Simulations and experimental studies of tenebrionid beetle movements (1992) Ecology, 73, pp. 1968-1983; DeJong, S., Burrough, P.A., Fractal approach to the classification of Mediterranean vegetation types in remotely sensed images (1996) Photogrammetric Engineering and Remote Sensing, 61, pp. 1041-1053; Kenkel, N., Walker, D., Fractals in the biological sciences (1996) Coenoses, 11, pp. 77-100; Kennedy, J., The behaviour of the Desert Locust (Schistocerca gregaria (Forsk.)) (Orthoptera) in an outbreak centre (1939) Transactions of the Royal Entomological Society of London, 89, pp. 385-542; Lovejoy, S., Schertzer, D., Ladoy, P., Fractal characterization of inhomogeneous geophysical measuring networks (1986) Nature, 319, pp. 43-44; McAuliffe, J., A rapid survey method of the estimation of density and cover in desert plant communities (1990) Journal of Vegetation Science, 1, pp. 653-656; Milne, B., Spatial aggregation and neutral models in fractal landscapes (1992) American Naturalist, 139, pp. 37-57; Monod, T., Modes 'contracte?' et 'diffus' de la ve?ge?tation saharienne (1954) Symposia of the Institute of Biology, 3. , Biology of Deserts (eds J. Cloudsley-Thompson). Institute of Biology, London; Morse, D.R., Lawton, J., Dodson, M., Williamson, M., Fractal dimension of vegetation and the distribution of arthropod body lengths (1985) Nature, 314, pp. 731-732; Ozenda, P., (1977) Flore du Sahara, 2nd Edn., , CNRS, Paris; Palmer, M., Fractal geometry: A tool for describing spatial patterns of plant communities (1988) Vegetatio, 75, pp. 91-102; Palmer, M., The coexistence of species in fractal landscapes (1992) American Naturalist, 139, pp. 375-397; Pedgley, D., (1981) Desert Locust Forecasting Manual, , Centre for Overseas Pest Research, London; Pennycuick, C., Kline, N., Units of measurement for fractal extent, applied to the coastal distribution of bald eagle nests in the Aleutian Islands, Alaska (1986) Oecologia, 68, pp. 254-258; Popov, G., (1997) Atlas of Desert Locust Breeding Habitats, , FAO, Rome; Popov, G., Duranton, J., Gigault, J., (1991) Etude Ecologique des Biotopes du Criquet Pe?lerin Schistocerca gregaria (Forska?l, 1775) en Afrique Nord-Occidentale. Mise en 'E?vidence et Description des Unite?s Territoriales E?cologiquement', , Ministe?re de la Coope?ration et du De?veloppement: Paris/Commission des Communaute?s Europe?ennes: Bruxelles/FAO: Rome/CIRAD-PRIFAS: Montpellier; Ritchie, M., Scale-dependent foraging and patch choice in fractal environments (1998) Evolutionary Ecology, 12, pp. 309-330; Roffey, J., Popov, G., Environmental and behavioural processes in a desert locust outbreak (1968) Nature, 219, pp. 446-450; Saupe, D., Algorithms for random fractals (1988) The Science of Fractal Images, pp. 711-113. , eds H. Peitgen \& D. Saupe. Springer-Verlag, New York, London; Simpson, S., McCaffery, A., Ha?gele, B., A behavioural analysis of phase change in the desert locust (1999) Biology Reviews, 74, pp. 461-480; Sokal, R., Rohlf, F., (1995) Biometry: The Principles and Practice of Statistics in Biology Research, 3rd Edn., , W.H. Freeman, New York; Tilman, D., Kareiva, P., (1997) Spatial Ecology: The Role of Space in Population Dynamics, , Academic Press, San Diego, CA; Uvarov, B., (1977) Grasshoppers and Locusts, 2. , Centre for Overseas Pest Research, London; Wiens, J., Crist, T., With, K., Milne, B., Fractal patterns of insect movement in microlandscape mosaics (1995) Ecology, 76, pp. 663-666; Williamson, M., Lawton, J., Measuring habitat structure with fractal geometry (1991) Habitat Structure: The Physical Arrangement of Objects in Space, pp. 69-86. , eds S. Bell. E. McCoy \& H. Mushinsky. Chapman \& Hall, London. },
    ABSTRACT = { 1. This paper evaluates box-counting dimension as a quantitative clumping index for discontinuous plant cover, and applies it to studies of both small- and large-scale ecological processes in desert locust (Schistocerca gregaria) swarming. 2. The quadrat under study is tiled with squares of increasing size, and the relationship between the number of occupied squares and square size gives the box-counting dimension. This index is high for random distributions and decreases when the vegetation is clumped; it is also positively linked to the abundance of vegetation. 3. At the scale of individual locusts, this index captures the space-filling properties of vegetation that promote change to the gregarious phase and the onset of swarming. At the very large scale, box-counting dimension measured from satellite imagery reflects topography, which influences the concentration and migration of locust swarms. 4. Fractal geometry considers scale of measurement in quantifying pattern and provides a framework to interpret ecological phenomena across spatial scales. Demonstration of a statistically significant relationship between the box-counting exponent and locust behaviour shows how this approach can be applied to ecological studies. },
    KEYWORDS = { Aggregation Box-counting method Discontinuous plant cover Dispersion Spatial statistics aggregation behavior dispersion index method locust vegetation cover Acrididae Orthoptera Schistocerca gregaria },
    OWNER = { racinep },
    TIMESTAMP = { 2007.09.07 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...