WhitmanParisienPriceEtAl2017

Référence

Whitman, E., Parisien, M.-A., Price, D.T., St-Laurent, M.-H., Johnson, C.J., DeLancey, E.R., Arseneault, D. and Flannigan, M.D. (2017) A framework for modeling habitat quality in disturbance-prone areas demonstrated with woodland caribou and wildfire. Ecosphere, 8(4):e01787-n/a. (URL )

Résumé

Natural resource management professionals require adaptable spatial tools for conserving and managing wildlife across landscapes. These tools should integrate multiple components of habitat quality and incorporate local disturbance regimes. We provide a spatial modeling framework that integrates three components of habitat (nutritional resources, connectivity, and predation risk) into indices of habitat quality under a simulated wildfire disturbance regime. Woodland caribou (Rangifer tarandus caribou), a species of conservation concern, is used to illustrate our framework. We simulated disturbance from wildfire on two boreal forest landscapes to produce stand ages, from which we computed and integrated the three habitat indicator components using different schemes. Spatial variation in the influence of wildfire and the distribution of the three components of habitat resulted in heterogeneous patterns of habitat quality. The inclusion of disturbance led to a different habitat quality landscape than that of a static model in which the influence of wildfire on vegetation communities was not considered, incorporating the likelihood of persistence into the overall representation of habitat quality. The integration of nutrition, connectivity, and predation risk into a single index of habitat quality produced spatial patterns distinct from maps of the individual components. Regardless of whether the components were combined through additive, multiplicative, or minimum habitat quality threshold methods, areas of very high- and poor-quality habitat were found at consistent locations across the landscape, suggesting that these two types of regions provide opportunities for long-term management interventions. The framework presented here is adaptable and modular; it could be modified and applied to other species, regions, and disturbance regimes. It provides a nuanced representation of persistent habitat and has the potential to be a useful tool for conservation planning.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { WhitmanParisienPriceEtAl2017,
    AUTHOR = { Whitman, E. and Parisien, M.-A. and Price, D.T. and St-Laurent, M.-H. and Johnson, C.J. and DeLancey, E.R. and Arseneault, D. and Flannigan, M.D. },
    TITLE = { A framework for modeling habitat quality in disturbance-prone areas demonstrated with woodland caribou and wildfire },
    JOURNAL = { Ecosphere },
    YEAR = { 2017 },
    VOLUME = { 8 },
    NUMBER = { 4 },
    PAGES = { e01787--n/a },
    ISSN = { 2150-8925 },
    NOTE = { e01787 },
    ABSTRACT = { Natural resource management professionals require adaptable spatial tools for conserving and managing wildlife across landscapes. These tools should integrate multiple components of habitat quality and incorporate local disturbance regimes. We provide a spatial modeling framework that integrates three components of habitat (nutritional resources, connectivity, and predation risk) into indices of habitat quality under a simulated wildfire disturbance regime. Woodland caribou (Rangifer tarandus caribou), a species of conservation concern, is used to illustrate our framework. We simulated disturbance from wildfire on two boreal forest landscapes to produce stand ages, from which we computed and integrated the three habitat indicator components using different schemes. Spatial variation in the influence of wildfire and the distribution of the three components of habitat resulted in heterogeneous patterns of habitat quality. The inclusion of disturbance led to a different habitat quality landscape than that of a static model in which the influence of wildfire on vegetation communities was not considered, incorporating the likelihood of persistence into the overall representation of habitat quality. The integration of nutrition, connectivity, and predation risk into a single index of habitat quality produced spatial patterns distinct from maps of the individual components. Regardless of whether the components were combined through additive, multiplicative, or minimum habitat quality threshold methods, areas of very high- and poor-quality habitat were found at consistent locations across the landscape, suggesting that these two types of regions provide opportunities for long-term management interventions. The framework presented here is adaptable and modular; it could be modified and applied to other species, regions, and disturbance regimes. It provides a nuanced representation of persistent habitat and has the potential to be a useful tool for conservation planning. },
    DOI = { 10.1002/ecs2.1787 },
    KEYWORDS = { connectivity, disturbance modeling, habitat quality, landscape nutrition, predation risk, woodland caribou },
    URL = { http://dx.doi.org/10.1002/ecs2.1787 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...