AutyAchimBedardEtAl2014

Référence

Auty, D., Achim, A., Bédard, P. and Pothier, D. (2014) StatSAW: modelling lumber product assortment using zero-inflated Poisson regression. Canadian Journal of Forest Research, 44(6):638-647. (URL )

Résumé

Realistic forestry value chain simulations require accurate representations of each component. For primary processing, this is complicated by the fact that a single raw material is converted into a wide range of lumber products. The aim of this study was to develop statistical models for predicting lumber product assortment from tree size information, while taking into account the high proportion of zeros in the data. Lumber recovery was simulated from a database of 1013 laser-scanned Picea mariana (Mill.) Britton, Sterns & Poggenb. and Abies balsamea (L.) Mill. stems using the sawing simulator Optitek. The number of boards per stem of specific products was modelled with zero-inflated Poisson regression using stem diameter and height as covariates. The number of boards per stem was strongly related to both diameter and height, but also changed according to input prices for lumber products. Zero-inflated models outperformed ordinary Poisson regression in all cases. The developed models will be integrated into simulation tools designed to optimize processes along the entire forest value chain from forest to end user.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { AutyAchimBedardEtAl2014,
    AUTHOR = { Auty, D. and Achim, A. and Bédard, P. and Pothier, D. },
    TITLE = { StatSAW: modelling lumber product assortment using zero-inflated Poisson regression },
    JOURNAL = { Canadian Journal of Forest Research },
    YEAR = { 2014 },
    VOLUME = { 44 },
    PAGES = { 638-647 },
    NUMBER = { 6 },
    ABSTRACT = { Realistic forestry value chain simulations require accurate representations of each component. For primary processing, this is complicated by the fact that a single raw material is converted into a wide range of lumber products. The aim of this study was to develop statistical models for predicting lumber product assortment from tree size information, while taking into account the high proportion of zeros in the data. Lumber recovery was simulated from a database of 1013 laser-scanned Picea mariana (Mill.) Britton, Sterns & Poggenb. and Abies balsamea (L.) Mill. stems using the sawing simulator Optitek. The number of boards per stem of specific products was modelled with zero-inflated Poisson regression using stem diameter and height as covariates. The number of boards per stem was strongly related to both diameter and height, but also changed according to input prices for lumber products. Zero-inflated models outperformed ordinary Poisson regression in all cases. The developed models will be integrated into simulation tools designed to optimize processes along the entire forest value chain from forest to end user. },
    DOI = { 10.1139/cjfr-2013-0500 },
    EPRINT = { http://dx.doi.org/10.1139/cjfr-2013-0500 },
    OWNER = { nafon9 },
    TIMESTAMP = { 2014.07.14 },
    URL = { http://dx.doi.org/10.1139/cjfr-2013-0500 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...