GreeneKneeshawMessierEtAl2002

Référence

Greene, D.F., Kneeshaw, D.D., Messier, C., Lieffers, V., Cormier, D., Doucet, R., Coates, K.D., Groot, A., Grover, G., Calogeropoulos, C. (2002) Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). Forestry Chronicle, 78(2):281-295.

Résumé

We model and compare the biological and financial constraints of four prescriptions that serve as alternatives to conventional clearcutting followed by planting in eastern and western boreal mixedwood stands. These alternative prescriptions for full or partial conifer stocking are (1) reliance on advance regeneration with or without augmentation by fill-planting; (2) understory scarification during a mast year; (3) direct seeding either aerially or with a scarifier-seeder; and (4) underplanting. Our main conclusions concerning the biological constraints are that (1) advance regeneration, mainly of balsam fir in the east and white spruce in the west, requires >26 000 and > 4000 trees/ha (because of different distributions), respectively, to achieve full conifer stocking; (2) reliance on a mast year requires at least 6 m2/ha of mature conifer basal area, but much less if some advance regeneration is present or only moderate stocking is desired; (3) aerial seeding with 35% scarification requires about a half-million seeds/ha to achieve full conifer stocking, while a scarifier-seeder would require only a third of this application rate; and (4) underplanting is constrained to aspen stands with >25% incident light at planting height. In all cases, alternative prescriptions become more feasible if only moderate or minimal stocking is the silvicultural objective. A costing exercise for the four prescriptions in comparison with a clearcut followed by planting shows that reliance on advance regeneration or understory planting are the cheapest alternatives to achieve full or partial conifer stocking. With the exception of full conifer stocking in situations where there is little advance regeneration (and where herbicides can be used), conventional plantations are never the cheapest approach. In such cases, fill planting and use of a scarifier-seeder become viable options. Aerial seeding and reliance on a mast year are the most expensive of the alternatives. We conclude, tentatively, that there is enough conifer basal area in most of the eastern boreal mixedwood of Canada to allow for the use of either or both a mast year and advance regeneration to achieve full or partial conifer stocking. By contrast, in the west conifer basal area will seldom be sufficient for natural seeding, and the density of advance regeneration is likewise often too low. Finally, because of light constraints, understory planting appears to have a much wider applicability in the west than in the east.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { GreeneKneeshawMessierEtAl2002,
    AUTHOR = { Greene, D.F. and Kneeshaw, D.D. and Messier, C. and Lieffers, V. and Cormier, D. and Doucet, R. and Coates, K.D. and Groot, A. and Grover, G. and Calogeropoulos, C. },
    TITLE = { Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir) },
    JOURNAL = { Forestry Chronicle },
    YEAR = { 2002 },
    VOLUME = { 78 },
    PAGES = { 281-295 },
    NUMBER = { 2 },
    NOTE = { Cited By (since 1996): 19 Export Date: 6 March 2007 Source: Scopus },
    ABSTRACT = { We model and compare the biological and financial constraints of four prescriptions that serve as alternatives to conventional clearcutting followed by planting in eastern and western boreal mixedwood stands. These alternative prescriptions for full or partial conifer stocking are (1) reliance on advance regeneration with or without augmentation by fill-planting; (2) understory scarification during a mast year; (3) direct seeding either aerially or with a scarifier-seeder; and (4) underplanting. Our main conclusions concerning the biological constraints are that (1) advance regeneration, mainly of balsam fir in the east and white spruce in the west, requires >26 000 and > 4000 trees/ha (because of different distributions), respectively, to achieve full conifer stocking; (2) reliance on a mast year requires at least 6 m2/ha of mature conifer basal area, but much less if some advance regeneration is present or only moderate stocking is desired; (3) aerial seeding with 35% scarification requires about a half-million seeds/ha to achieve full conifer stocking, while a scarifier-seeder would require only a third of this application rate; and (4) underplanting is constrained to aspen stands with >25% incident light at planting height. In all cases, alternative prescriptions become more feasible if only moderate or minimal stocking is the silvicultural objective. A costing exercise for the four prescriptions in comparison with a clearcut followed by planting shows that reliance on advance regeneration or understory planting are the cheapest alternatives to achieve full or partial conifer stocking. With the exception of full conifer stocking in situations where there is little advance regeneration (and where herbicides can be used), conventional plantations are never the cheapest approach. In such cases, fill planting and use of a scarifier-seeder become viable options. Aerial seeding and reliance on a mast year are the most expensive of the alternatives. We conclude, tentatively, that there is enough conifer basal area in most of the eastern boreal mixedwood of Canada to allow for the use of either or both a mast year and advance regeneration to achieve full or partial conifer stocking. By contrast, in the west conifer basal area will seldom be sufficient for natural seeding, and the density of advance regeneration is likewise often too low. Finally, because of light constraints, understory planting appears to have a much wider applicability in the west than in the east. },
    KEYWORDS = { Advance regeneration Balsam fir Boreal mixedwood silviculture Direct seeding Understory planting Understory scarification White spruce },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...