MartyHouleGagnon2015

Référence

Marty, C., Houle, D. and Gagnon, C. (2015) Effect of the Relative Abundance of Conifers Versus Hardwoods on Soil δ13C Enrichment with Soil Depth in Eastern Canadian forests. Ecosystems, 18(4):629-642. (Scopus )

Résumé

Soils are a major component of the global C cycle, and considerable effort has been dedicated to improve our understanding of factors controlling soil organic C (SOC) turnover and stabilization in the last decades. Carbon stable isotopes are useful in this respect as they represent an integrative indicator of SOC biogeochemical processing. In the present study, C concentration and δ13C were measured in soil horizons of 21 forest sites located at the transition zone between the hardwood and the conifer forest in Québec, Canada, and related to 13 biophysical variables to identify the main drivers of SOC storage and turnover. Carbon concentrations in the forest floor (FF) and the B- and C-horizons were, respectively, strongly correlated with percentage of clay (Pclay), the mean annual precipitation: potential evapotranspiration ratio (MAP:PET), and percentage of hardwoods (Phwd). In FF, δ13C was poorly correlated with the studied variables, whereas in mineral horizons, it was significantly correlated with mean annual air temperature (MAAT) and the percentage of conifers (Pc) and Pclay. Across the studied area, δ13C increased on average by 2.0‰ from the FF to the C-horizon. The isotopic enrichment with soil depth (β) was strongly negatively correlated with Pc, which explained 55% of its variability among sites. This suggests that the vegetation type is an important driver of soil C long-term turnover rate in forest ecosystems. Overall, our data suggest that hardwood forest expansion in response to climate change might reduce the stability and the storage of SOC in the future. © 2015, Springer Science+Business Media New York.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MartyHouleGagnon2015,
    AUTHOR = { Marty, C. and Houle, D. and Gagnon, C. },
    TITLE = { Effect of the Relative Abundance of Conifers Versus Hardwoods on Soil δ13C Enrichment with Soil Depth in Eastern Canadian forests },
    JOURNAL = { Ecosystems },
    YEAR = { 2015 },
    VOLUME = { 18 },
    PAGES = { 629-642 },
    NUMBER = { 4 },
    NOTE = { cited By 1 },
    ABSTRACT = { Soils are a major component of the global C cycle, and considerable effort has been dedicated to improve our understanding of factors controlling soil organic C (SOC) turnover and stabilization in the last decades. Carbon stable isotopes are useful in this respect as they represent an integrative indicator of SOC biogeochemical processing. In the present study, C concentration and δ13C were measured in soil horizons of 21 forest sites located at the transition zone between the hardwood and the conifer forest in Québec, Canada, and related to 13 biophysical variables to identify the main drivers of SOC storage and turnover. Carbon concentrations in the forest floor (FF) and the B- and C-horizons were, respectively, strongly correlated with percentage of clay (Pclay), the mean annual precipitation: potential evapotranspiration ratio (MAP:PET), and percentage of hardwoods (Phwd). In FF, δ13C was poorly correlated with the studied variables, whereas in mineral horizons, it was significantly correlated with mean annual air temperature (MAAT) and the percentage of conifers (Pc) and Pclay. Across the studied area, δ13C increased on average by 2.0‰ from the FF to the C-horizon. The isotopic enrichment with soil depth (β) was strongly negatively correlated with Pc, which explained 55% of its variability among sites. This suggests that the vegetation type is an important driver of soil C long-term turnover rate in forest ecosystems. Overall, our data suggest that hardwood forest expansion in response to climate change might reduce the stability and the storage of SOC in the future. © 2015, Springer Science+Business Media New York. },
    AUTHOR_KEYWORDS = { boreal forests; carbon turnover time; forest soils; isotopic enrichment factor; soil organic carbon; δ13C },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1007/s10021-015-9852-2 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940002222&partnerID=40&md5=c780ec2876f0c03e447f3180fe1f4819 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...