McLoughlinMorrisFortinEtAl2010

Reference

McLoughlin, P.D., Morris, D.W., Fortin, D., Vander Wal, E., Contasti, A. L. (2010) Considering ecological dynamics in resource selection functions. Journal of Animal Ecology, 79(1):4-12.

Abstract

1. Describing distribution and abundance is requisite to exploring interactions between organisms and their environment. Recently, the resource selection function (RSF) has emerged to replace many of the statistical procedures used to quantify resource selection by animals. 2. A RSF is defined by characteristics measured on resource units such that its value for a unit is proportional to the probability of that unit being used by an organism. It is solved using a variety of techniques, particularly the binomial generalized linear model. 3. Observing dynamics in a RSF - obtaining substantially different functions at different times or places for the same species - alerts us to the varying ecological processes that underlie resource selection. 4. We believe that there is a need for us to reacquaint ourselves with ecological theory when interpreting RSF models. We outline a suite of factors likely to govern ecologically based variation in a RSF. In particular, we draw attention to competition and density-dependent habitat selection, the role of predation, longitudinal changes in resource availability and functional responses in resource use. 5. How best to incorporate governing factors in a RSF is currently in a state of development; however, we see promise in the inclusion of random as well as fixed effects in resource selection models, and matched case-control logistic regression. 6. Investigating the basis of ecological dynamics in a RSF will allow us to develop more robust models when applied to forecasting the spatial distribution of animals. It may also further our understanding of the relative importance of ecological interactions on the distribution and abundance of species.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { McLoughlinMorrisFortinEtAl2010,
    AUTHOR = { McLoughlin, P.D. and Morris, D.W. and Fortin, D. and Vander Wal, E. and Contasti, A. L. },
    TITLE = { Considering ecological dynamics in resource selection functions },
    JOURNAL = { Journal of Animal Ecology },
    YEAR = { 2010 },
    VOLUME = { 79 },
    PAGES = { 4-12 },
    NUMBER = { 1 },
    NOTE = { 531HY Times Cited:0 Cited References Count:69 },
    ABSTRACT = { 1. Describing distribution and abundance is requisite to exploring interactions between organisms and their environment. Recently, the resource selection function (RSF) has emerged to replace many of the statistical procedures used to quantify resource selection by animals. 2. A RSF is defined by characteristics measured on resource units such that its value for a unit is proportional to the probability of that unit being used by an organism. It is solved using a variety of techniques, particularly the binomial generalized linear model. 3. Observing dynamics in a RSF - obtaining substantially different functions at different times or places for the same species - alerts us to the varying ecological processes that underlie resource selection. 4. We believe that there is a need for us to reacquaint ourselves with ecological theory when interpreting RSF models. We outline a suite of factors likely to govern ecologically based variation in a RSF. In particular, we draw attention to competition and density-dependent habitat selection, the role of predation, longitudinal changes in resource availability and functional responses in resource use. 5. How best to incorporate governing factors in a RSF is currently in a state of development; however, we see promise in the inclusion of random as well as fixed effects in resource selection models, and matched case-control logistic regression. 6. Investigating the basis of ecological dynamics in a RSF will allow us to develop more robust models when applied to forecasting the spatial distribution of animals. It may also further our understanding of the relative importance of ecological interactions on the distribution and abundance of species. },
    KEYWORDS = { case-control competition density-dependent habitat selection functional response logistic regression predation random effects resource selection function rsf yellowstone-national-park predator-prey system use-availability data habitat selection red deer logistic-regression radio-tracking space-use population density },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...