WangChenWuEtAl2014

Référence

Wang, M., Chen, H., Wu, N., Peng, C., Zhu, Q., Zhu, D., Yang, G., Wu, J., He, Y., Gao, Y., Tian, J. and Zhao, X. (2014) Carbon dynamics of peatlands in China during the Holocene. Quaternary Science Reviews, 99:34-41. (Scopus )

Résumé

Understanding the responses of the carbon-rich peatland ecosystems to past climate change is crucial for predicting peat carbon fate in the future. Here we presented a data synthesis of peatland initiation ages, area changes, and peat carbon (C) accumulation rate variations in China since the Holocene, along with total C pool estimates. The data showed different controls of peatland expansion and C accumulation in different regions. The peat C accumulation rates were 32.3 (ranging from 20.7 to 50.2) g C m-2 yr-1 in the Qinghai-Tibetan Plateau (QTP) and 14.7 (ranging from 7.4 to 36.5) g C m-2 yr-1 in the Northeast China (NEC). The peaks of peatland expansion and C accumulation in the QTP occurred in the early Holocene in response to high summer insolation and strong summer-winter climate seasonality. The rapid peatland expansion and maximum C accumulation rate in the NEC occurred in the middle-late Holocene. Peatlands scattered in the coastal and lakeside regions of China expanded rapidly at the onset of the Holocene due to large transgression, consistent with the stronger summer insolation and monsoon, and during the middle and late Holocene, as a response to the high and stable sea level and the strong summer monsoon. The carbon storage of peatlands in China was estimated as 2.17 (ranging from 1.16 to 3.18) Pg, among which 1.49 (ranging from 0.58 to 2.40) Pg was contributed by peatlands in the QTP, 0.21 (ranging from 0.11 to 0.31) Pg by those in the NEC, and 0.47Pg by those scattered in other regions of China. Our comparison of peatlands dynamics among regions in China showed that climate and monsoon are the essential factors in determining the expansion and carbon accumulation patterns of peatlands, although their effects on peatland formation and C accumulation is complex owing to land availability in peatland basins and regional moisture conditions. © 2014 Elsevier Ltd.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { WangChenWuEtAl2014,
    AUTHOR = { Wang, M. and Chen, H. and Wu, N. and Peng, C. and Zhu, Q. and Zhu, D. and Yang, G. and Wu, J. and He, Y. and Gao, Y. and Tian, J. and Zhao, X. },
    TITLE = { Carbon dynamics of peatlands in China during the Holocene },
    JOURNAL = { Quaternary Science Reviews },
    YEAR = { 2014 },
    VOLUME = { 99 },
    PAGES = { 34-41 },
    NOTE = { cited By (since 1996)0 },
    ABSTRACT = { Understanding the responses of the carbon-rich peatland ecosystems to past climate change is crucial for predicting peat carbon fate in the future. Here we presented a data synthesis of peatland initiation ages, area changes, and peat carbon (C) accumulation rate variations in China since the Holocene, along with total C pool estimates. The data showed different controls of peatland expansion and C accumulation in different regions. The peat C accumulation rates were 32.3 (ranging from 20.7 to 50.2) g C m-2 yr-1 in the Qinghai-Tibetan Plateau (QTP) and 14.7 (ranging from 7.4 to 36.5) g C m-2 yr-1 in the Northeast China (NEC). The peaks of peatland expansion and C accumulation in the QTP occurred in the early Holocene in response to high summer insolation and strong summer-winter climate seasonality. The rapid peatland expansion and maximum C accumulation rate in the NEC occurred in the middle-late Holocene. Peatlands scattered in the coastal and lakeside regions of China expanded rapidly at the onset of the Holocene due to large transgression, consistent with the stronger summer insolation and monsoon, and during the middle and late Holocene, as a response to the high and stable sea level and the strong summer monsoon. The carbon storage of peatlands in China was estimated as 2.17 (ranging from 1.16 to 3.18) Pg, among which 1.49 (ranging from 0.58 to 2.40) Pg was contributed by peatlands in the QTP, 0.21 (ranging from 0.11 to 0.31) Pg by those in the NEC, and 0.47Pg by those scattered in other regions of China. Our comparison of peatlands dynamics among regions in China showed that climate and monsoon are the essential factors in determining the expansion and carbon accumulation patterns of peatlands, although their effects on peatland formation and C accumulation is complex owing to land availability in peatland basins and regional moisture conditions. © 2014 Elsevier Ltd. },
    AFFILIATION = { Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Laboratory for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forest University, Yangling 712100, China; Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu, Nepal; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Environment Sciences, Department of Biology Science, University of Quebec at Montreal, Montreal C3H 3P8, Canada; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Sustainable Resource Management, Memorial University of Newfoundland, Corner Brook, A2H 6P9, Canada },
    AUTHOR_KEYWORDS = { Anthropocene; Carbon pool; Climate change; Global carbon cycle; Wetlands },
    DOCUMENT_TYPE = { Article },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-84903594159&partnerID=40&md5=12faf55b4e3db87dc4145ee2a9c77b4d },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...