LiuZhuZhouEtAl2019

Référence

Liu, W., Zhu, Q., Zhou, X., Peng, C. (2019) Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Science of the Total Environment, 652:1456-1462. (Scopus )

Résumé

The biomass-derived CO2 emission is usually treated as neutral to climate change. However, due to the stay of biomass-derived CO2 in the atmosphere, many researchers believe that biomass-derived CO2 also has climate change benefit. Therefore, many methods to account the global warming potential of biomass-derived CO2 (GWPbio) were proposed. Based on those new methods, we developed an accounting system for climate change impact of biomass utilization in this study, and compared it with the conventional accounting system which follows the carbon neutral assumption. A case study of caragana-to-pellet bioenergy production system was simulated to test the performance of the GWPbio accounting system. The CENTURY model was used to simulate carbon dynamics of caragana plantation in the Loess Plateau in China, and life cycle assessment (LCA) model was developed to estimate the life cycle emissions of the caragana-to-pellet system. Attributed to short rotation of caragana plantation and fast biomass accumulation after harvest, the GWPbio values around 0.044 were obtained. When the GWPbio was applied to LCA, significant high life cycle CO2 emission was found in comparison to the conventional method. However, the GWPbio accounting system has lower positive climate change impact than the conventional accounting system in assessing the overall impact of biomass utilization. This indicated that the application of GWPbio accounting system would encourage the utilization of biomass and allow a fair comparison with fossil fuels. In the sensitivity analysis, we found the accounting system was sensitive to biomass accumulation and all the corresponding factor affecting biomass accumulation. © 2018

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { LiuZhuZhouEtAl2019,
    AUTHOR = { Liu, W. and Zhu, Q. and Zhou, X. and Peng, C. },
    TITLE = { Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment },
    JOURNAL = { Science of the Total Environment },
    YEAR = { 2019 },
    VOLUME = { 652 },
    PAGES = { 1456-1462 },
    NOTE = { cited By 0 },
    ABSTRACT = { The biomass-derived CO2 emission is usually treated as neutral to climate change. However, due to the stay of biomass-derived CO2 in the atmosphere, many researchers believe that biomass-derived CO2 also has climate change benefit. Therefore, many methods to account the global warming potential of biomass-derived CO2 (GWPbio) were proposed. Based on those new methods, we developed an accounting system for climate change impact of biomass utilization in this study, and compared it with the conventional accounting system which follows the carbon neutral assumption. A case study of caragana-to-pellet bioenergy production system was simulated to test the performance of the GWPbio accounting system. The CENTURY model was used to simulate carbon dynamics of caragana plantation in the Loess Plateau in China, and life cycle assessment (LCA) model was developed to estimate the life cycle emissions of the caragana-to-pellet system. Attributed to short rotation of caragana plantation and fast biomass accumulation after harvest, the GWPbio values around 0.044 were obtained. When the GWPbio was applied to LCA, significant high life cycle CO2 emission was found in comparison to the conventional method. However, the GWPbio accounting system has lower positive climate change impact than the conventional accounting system in assessing the overall impact of biomass utilization. This indicated that the application of GWPbio accounting system would encourage the utilization of biomass and allow a fair comparison with fossil fuels. In the sensitivity analysis, we found the accounting system was sensitive to biomass accumulation and all the corresponding factor affecting biomass accumulation. © 2018 },
    AFFILIATION = { Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, H3C3P8, Canada },
    AUTHOR_KEYWORDS = { Biomass; Biomass-derived CO2; Caragana; CENTURY model; Global warming potential; Life cycle assessment },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.scitotenv.2018.11.039 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056201267&doi=10.1016%2fj.scitotenv.2018.11.039&partnerID=40&md5=adfbf13fdd7a31ca7f748c1059b7ecdb },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...