BahnMcGill2007

Référence

Bahn, V., McGill, B.J. (2007) Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography, 16(6):733-742.

Résumé

Aim Distribution modelling relates sparse data on species occurrence or abundance to environmental information to predict the population of a species at any point in space. Recently, the importance of spatial autocorrelation in distributions has been recognized. Spatial autocorrelation can be categorized as exogenous (stemming from autocorrelation in the underlying variables) or endogenous (stemming from activities of the organism itself, such as dispersal). Typically, one asks whether spatial models explain additional variability (endogenous) in comparison to a fully specified habitat model. We turned this question around and asked: can habitat models explain additional variation when spatial structure is accounted for in a fully specified spatially explicit model? The aim was to find out to what degree habitat models may be inadvertently capturing spatial structure rather than true explanatory mechanisms. Location We used data from 190 species of the North American Breeding Bird Survey covering the conterminous United States and southern Canada. Methods We built 13 different models on 190 bird species using regression trees. Our habitat-based models used climate and landcover variables as independent variables. We also used random variables and simulated ranges to validate our results. The two spatially explicit models included only geographical coordinates or a contagion term as independent variables. As another angle on the question of mechanism vs. spatial structure we pitted a model using related bird species as predictors against a model using randomly selected bird species. Results The spatially explicit models outperformed the traditional habitat models and the random predictor species outperformed the related predictor species. In addition, environmental variables produced a substantial R-2 in predicting artificial ranges. Main conclusions We conclude that many explanatory variables with suitable spatial structure can work well in species distribution models. The predictive power of environmental variables is not necessarily mechanistic, and spatial interpolation can outperform environmental explanatory variables.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { BahnMcGill2007,
    AUTHOR = { Bahn, V. and McGill, B.J. },
    TITLE = { Can niche-based distribution models outperform spatial interpolation? },
    JOURNAL = { Global Ecology and Biogeography },
    YEAR = { 2007 },
    VOLUME = { 16 },
    PAGES = { 733-742 },
    NUMBER = { 6 },
    MONTH = { nov },
    ABSTRACT = { Aim Distribution modelling relates sparse data on species occurrence or abundance to environmental information to predict the population of a species at any point in space. Recently, the importance of spatial autocorrelation in distributions has been recognized. Spatial autocorrelation can be categorized as exogenous (stemming from autocorrelation in the underlying variables) or endogenous (stemming from activities of the organism itself, such as dispersal). Typically, one asks whether spatial models explain additional variability (endogenous) in comparison to a fully specified habitat model. We turned this question around and asked: can habitat models explain additional variation when spatial structure is accounted for in a fully specified spatially explicit model? The aim was to find out to what degree habitat models may be inadvertently capturing spatial structure rather than true explanatory mechanisms. Location We used data from 190 species of the North American Breeding Bird Survey covering the conterminous United States and southern Canada. Methods We built 13 different models on 190 bird species using regression trees. Our habitat-based models used climate and landcover variables as independent variables. We also used random variables and simulated ranges to validate our results. The two spatially explicit models included only geographical coordinates or a contagion term as independent variables. As another angle on the question of mechanism vs. spatial structure we pitted a model using related bird species as predictors against a model using randomly selected bird species. Results The spatially explicit models outperformed the traditional habitat models and the random predictor species outperformed the related predictor species. In addition, environmental variables produced a substantial R-2 in predicting artificial ranges. Main conclusions We conclude that many explanatory variables with suitable spatial structure can work well in species distribution models. The predictive power of environmental variables is not necessarily mechanistic, and spatial interpolation can outperform environmental explanatory variables. },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.18 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...