ShipleyLechowicz2000

Référence

Shipley, B. and Lechowicz, M.J. (2000) The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience, 7(2):183-194.

Résumé

We grew 40 commonly co-occurring species of wetland herbs from eastern North America under uniform conditions to evaluate the overall pattern of interspecific variation in specific leaf mass (SLM), foliar nitrogen content, stomatal conductance (g), and internal leaf CO2 concentration (c(i)). While the relationship between any two of these traits that influence net photosynthetic rate is constrained to some degree, there is sufficient flexibility to allow the evolution of different but more or less equally effective interrelationships among these central elements of leaf form and function. We use contemporary techniques of structural equation modelling to describe the general nature of such evolutionary diversification in leaf form and function among these wetland plants. Our model essentially extends the Cowan-Farquhar model of stomatal regulation to include relationships between SLM and foliar nitrogen. The model can take two forms, with variables expressed as either per unit leaf area or per unit leaf mass. When variables are expressed on an areal basis, the model predicts that a species with a higher SLM will have a higher foliar nitrogen level. The foliar nitrogen level, in accordance with the Cowan-Farquhar model, in turn determines the dynamics of stomatal regulation in relation to the marginal cost of water loss relative to carbon gain. The dependence of stomatal regulation on foliar nitrogen also determines the maximal rates of stomatal conductance and net photosynthesis. Internal CO2 concentrations within the leaf follow as a necessary consequence of these interrelationships. This areal-based model describes the data for the 35 C3 wetland species well; the same basic model applies to the five C4 species in our sample, except for shifts in the quantitative effects of net photosynthetic rate and stomatal conductance on internal CO2 levels. When the variables are expressed on a mass basis, a slightly different model results, as net photosynthetic rate decreases directly with SLM and is not related to species level variation in either leaf nitrogen concentration or maximal stomatal conductane. Both forms of the model indicate the need to advance our understanding of the ecological and evolutionary basis for variation in SLM, including its association with traits such as leaf demography and canopy architecture as well as environmental characteristics of the habitats where particular species predominate.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { ShipleyLechowicz2000,
    AUTHOR = { Shipley, B. and Lechowicz, M.J. },
    TITLE = { The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species },
    JOURNAL = { Ecoscience },
    YEAR = { 2000 },
    VOLUME = { 7 },
    PAGES = { 183-194 },
    NUMBER = { 2 },
    NOTE = { 11956860 (ISSN) Cited By (since 1996): 14 Export Date: 26 April 2007 Source: Scopus Language of Original Document: English Correspondence Address: Shipley, B.; Departement de Biologie; Universite de Sherbrooke Sherbrooke, Que. J1K 2R1, Canada; email: bshipley@courrier.usherb.ca References: Bentler, P.M., (1995) EQS Structural Equations Program Manual, , Multivariate Software, Inc., Encino, California; Bollen, K.A., (1989) Structural Equations with Latent Variables, , Wiley, New York; Cowan, I.R., Farquhar, G.D., Stomatal function in relation to leaf metabolism environment (1977) Integration of Activity in the Higher Plant, pp. 471-505. , D. H. Jennings (ed.). Cambridge University Press, Cambridge; Elmore, C.D., Paul, R.N., Composite list of C4 weeds (1983) Weed Science, 31, pp. 686-692; Farquhar, G.D., Models of integrated photosynthesis of cells and leaves (1989) Philosophical Transactions of the Royal Society of London, 323, pp. 357-367; Farquhar, G.D., Sharkey, T.D., Stomatal conductance and photosynthesis (1982) Annual Review of Plant Physiology, 33, pp. 317-345; Field, C., Mooney, H.A., The photosynthesis-nitrogen relationship in wild plants (1986) On the Economy of Form and Function, pp. 25-55. , T. J. Givnish (ed.). Cambridge University Press, Cambridge; Field, C.B., Ball, J.T., Berry, J.A., Photosynthesis: Principles and field techniques (1991) Plant Physiological Ecology: Field Methods and Instrumentation, pp. 209-253. , R. W. Pearcy, J. Ehleringer, H. A. Mooney \& P. W. Rundel (ed.). Chapman and Hall, London; Gleason, H.A., Cronquist, A., (1991) Manual of Vascular Plants of Northeastern United States and Adjacent Canada, Second Edition, , The New York Botanical Garden, New York; Gutschick, V.P., (1987) A Functional Biology of Crop Plants, , Timber Press, Portland, Oregon; Gutschick, V.P., Wiegel, F.W., Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass (1988) American Naturalist, 132, pp. 67-86; Horn, H.S., (1971) The Adaptive Geometry of Trees, , Princeton University Press, Princeton, New Jersey; Konings, H., Physiological and morphological differences between plants with a high NAR or a high LAR as related to environmental conditions (1989) Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, pp. 101-123. , H. Lambers, M. L. Cambridge, H. Konings \& T. L. Pons (ed.). SPB Academic Publishers, The Hague; Longstreth, D.J., Photosynthesis and photorespiration in freshwater emergent and floating plants (1989) Aquatic Botany, 34, pp. 287-299; Meziane, D., Shipley, B., Interacting determinants of specific leaf area in 22 herbaceous species: Effects of irradiance and nutrient availability (1999) Plant, Cell \& Environment, 22, pp. 447-459; Middleton, K.R., New Nessler reagent and its use in the direct Nesslerization of Kjeldahl digests (1960) Journal of Applied Chemistry, 10, pp. 281-286; Pearl, J., (1988) Probabilistic Reasoning in Intelligent Systems, , Morgan Kaufmann, San Mateo, California; Poorter, H., Interspecific variation in relative growth rate: On ecological causes and physiological consequences (1989) Causes and Consequences of Variation in Growth Rate of Higher Plants, pp. 45-68. , L. Lambers, M. L. Cambridge, H. Konings \& T. L. Pons (ed.). SPB Academic Publishing, The Hague; Poorter, H., Remkes, C., Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate (1990) Oecologia, 83, pp. 553-559; Pyankov, V.I., Kondratchuk, A.V., Shipley, B., Leaf structure and specific leaf mass: The alpine desert plants of the Eastern Pamirs (Tadjikistan) (1999) New Phytologist, 143, pp. 131-142; Reich, P.B., Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: 'the blind men and the elephant retold.' (1993) Functional Ecology, 7, pp. 721-725; Reich, P.B., Walters, M.B., Ellsworth, D.S., Leaf life-span in relation to leaf, plant and stand characteristics (1992) Ecological Monographs, 62, pp. 365-392; Reich, P.B., Walters, M.B., Ellsworth, D.S., From tropics to tundra: Global convergence in plant functioning (1997) Proceedings of the National Academy of Sciences, 94, pp. 13730-13734. , U.S.A; Reich, P.B., Ellsworth, D.S., Walters, M.B., Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups (1998) Functional Ecology, 12, pp. 948-958; Reich, P.B., Uhl, C., Walters, M.B., Ellsworth, D.S., Leaf life-span as a determinant of leaf structure and function among 23 tree species in Amazonian forest communities (1991) Oecologia, 86, pp. 16-24; Schulze, E.-D., Kelliher, F.M., Korner, C., Lloyd, J., Leuning, R., Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology exercise (1994) Annual Review of Ecology and Systematics, 25, pp. 629-660; Shipley, B., Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms (1995) Functional Ecology, 9, pp. 312-319; Shipley, B., Exploratory path analysis with applications in ecology and evolution (1997) American Naturalist, 149, pp. 1113-1138; Shipley, B., Testing causal explanations in organismal biology: Causation, correlation and structural equations modelling (1999) Oikos, 86, pp. 374-1282; Shipley, B., A new inferential test for path models based on directed acyclic graphs (2000) Structural Equation Modeling, 7, pp. 206-218; Shipley, B., (2001) Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference, , Cambridge University Press, Cambridge; Shipley, B., Peters, R.H., A test of the Tilman model of plant strategies: Relative growth rate and biomass partitioning (1990) American Naturalist, 136, pp. 139-153; Spirtes, P., Glymour, C., Scheines, R., Causation, Prediction and Search (1993) Springer-Verlag Lecture Notes in Statistics, 81. , Springer-Verlag, New York; Spirtes, P., Scheines, R., Glymour, C., Meek, C., (1993) TETRAD II: Tools for Discovery, , Academic Press, New York; (1995) S-PLUS Guide to Statistical and Mathematical Analysis, Version 3.3, , StatSci, a Division of Mathsoft, Inc., Seattle, Washington; Wullschleger, S.D., Biochemical limitations to carbon assimilation in C3 plants: A retrospective analysis of the A/ci curves from 109 species (1993) Journal of Experimental Botany, 44, pp. 907-920. },
    ABSTRACT = { We grew 40 commonly co-occurring species of wetland herbs from eastern North America under uniform conditions to evaluate the overall pattern of interspecific variation in specific leaf mass (SLM), foliar nitrogen content, stomatal conductance (g), and internal leaf CO2 concentration (c(i)). While the relationship between any two of these traits that influence net photosynthetic rate is constrained to some degree, there is sufficient flexibility to allow the evolution of different but more or less equally effective interrelationships among these central elements of leaf form and function. We use contemporary techniques of structural equation modelling to describe the general nature of such evolutionary diversification in leaf form and function among these wetland plants. Our model essentially extends the Cowan-Farquhar model of stomatal regulation to include relationships between SLM and foliar nitrogen. The model can take two forms, with variables expressed as either per unit leaf area or per unit leaf mass. When variables are expressed on an areal basis, the model predicts that a species with a higher SLM will have a higher foliar nitrogen level. The foliar nitrogen level, in accordance with the Cowan-Farquhar model, in turn determines the dynamics of stomatal regulation in relation to the marginal cost of water loss relative to carbon gain. The dependence of stomatal regulation on foliar nitrogen also determines the maximal rates of stomatal conductance and net photosynthesis. Internal CO2 concentrations within the leaf follow as a necessary consequence of these interrelationships. This areal-based model describes the data for the 35 C3 wetland species well; the same basic model applies to the five C4 species in our sample, except for shifts in the quantitative effects of net photosynthetic rate and stomatal conductance on internal CO2 levels. When the variables are expressed on a mass basis, a slightly different model results, as net photosynthetic rate decreases directly with SLM and is not related to species level variation in either leaf nitrogen concentration or maximal stomatal conductane. Both forms of the model indicate the need to advance our understanding of the ecological and evolutionary basis for variation in SLM, including its association with traits such as leaf demography and canopy architecture as well as environmental characteristics of the habitats where particular species predominate. },
    KEYWORDS = { Comparative ecology Leaf nitrogen Path analysis Photosynthesis Specific leaf mass Stomatal conductance Structural equations modelling comparative study gas exchange herb leaf morphology nitrogen photosynthesis wetland North America },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...