ShipleyAlmeida-Cortez2003

Référence

Shipley, B. and Almeida-Cortez, J. (2003) Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. Ecoscience, 10(1):74-79.

Résumé

Specific leaf area (SLA) is a common variable in comparative plant ecology that is often measured on field-grown plants, yet SLA is known to be a plastic trait. The motivation for this study was therefore to determine the degree to which environmentally induced plasticity in SLA might obscure interspecific trends. Specifically, we tested the hypothesis that SLA is more responsive to nutrient stress at low irradiance than at high irradiance. To test this hypothesis we grew plants of six species of herbaceous Asteraceae in factorial combinations of 500, 250, and 125 ?mo1 m-2 s-1 irradiance and a full strength (1/1), a 1/5, and a 1/10 dilution of a modified Hoagland hydroponic solution. The full strength solution had 8 mM of nitrogen. Plants were harvested at 21, 28, 35, and 42 days from germination. SLA varied significantly between species, harvest dates, and experimental treatments. In general, SLA decreased with age, but more severely at low irradiance. SLA increased with decreasing irradiance. SLA also increased with increasing nutrient concentration, but this effect disappeared in the older plants at the higher irradiance. These trends were not seen in every species. Our hypothesis was supported: SLA is more responsive to nutrient stress at low irradiance, than at high irradiance, but the exact response is species-specific. Despite these environmentally induced changes in SLA at the intraspecific level, the interspecific differences were maintained across environments, justifying the use of SLA as a useful trait in comparative plant ecology.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { ShipleyAlmeida-Cortez2003,
    AUTHOR = { Shipley, B. and Almeida-Cortez, J. },
    TITLE = { Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability },
    JOURNAL = { Ecoscience },
    YEAR = { 2003 },
    VOLUME = { 10 },
    PAGES = { 74-79 },
    NUMBER = { 1 },
    NOTE = { 11956860 (ISSN) Cited By (since 1996): 5 Export Date: 26 April 2007 Source: Scopus Language of Original Document: English Correspondence Address: Shipley, B.; De?partement de Biologie; Universite? de Sherbrooke Sherbrooke, Que. J1K 2R1, Canada; email: Bill.Shipley@Usherbrooke.ca References: Abrams, M.D., Kubiske, M.E., Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank (1990) Forest Ecology and Management, 31, pp. 245-253; Almeida-Cortez, J.S., Shipley, B., Arnason, J.T., Do plant species with high relative growth rates have poorer chemical defenses? (1999) Functional Ecology, 13, pp. 819-827; Chatterton, N.J., Lee, D.R., Hungerford, W.E., Diurnal change in specific leaf weight of Medicago sativa L. and Zea mays L (1972) Crop Science, 12, pp. 576-578; Dijkstra, P., Cause and effect of differences in specific leaf area (1989) Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, pp. 125-141. , H. Lambers, H., M. L. Cambridge, H. Koning and T. L. Pons. (ed.). SPB Academic Publishing, The Hague; Garnier, E., Bellmann, A., Debain, S., Berthelier, P., Ducour, B., Roumet C. Navas, M.-L., Consistency of species ranking based on functional leaf traits (2001) New Phytologist, 152, pp. 69-83; Gleason, H.A., Cronquist, A., (1991) Manual of Vascular Plants of Northeastern United States and Adjacent Canada, , The New York Botanical Garden, New York; Hirose, T., Freijsen, A.H.J., Lambers, H., Modelling of the responses to nitrogen availability of two Plantago species grown at a range of exponential nutrient addition rates (1988) Plant, Cell and Environment, 11, pp. 827-834; Hoagland, D.R., Arnon, D.I., (1950) The Water Culture Method of Growing Plants Without Soil, , California Agricultural Experiment Station, Circular 347. Berkeley, California; Koike, T., Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees (1988) Plant Species Biology, 3, pp. 77-87; Marie-Victorin, F., (1964) Flore Laurentienne, , Les Presses de l'Universite? de Montre?al, Montre?al, Que?bec; Meziane, D., Shipley, B., Interacting determinants of specific leaf area in 22 herbaceous species: Effects of irradiance and nutrient availability (1998) Plant Cell and Environment, 22, pp. 447-459; Niinemets, U., Components of leaf dry mass per area - Thickness and density - Alter leaf photosynthetic capacity in reverse directions in woods plants (1999) New Phytologist, 144, pp. 35-47; Poorter, H., De Jong, R., A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity (1999) New Phytologist, 143, pp. 163-176; Poorter, H., Garnier, E., Ecological significance of inherent variation in relative growth rate and its components (1999) Handbook of Functional Plant Ecology, pp. 82-120. , F. I. Pugnaire and F. Valladares (ed.). Marcel Dekker, New York; Poorter, H., Remkes, C., Leaf area ratio and net assimilation rate of 24 species differing in relative growth rate (1990) ?cologia, 83, pp. 553-559; Pyankov, V., Kondratchuk, A., Shipley, B., Leaf structure and specific leaf mass: The alpine desert plants of the eastern Pamirs (Tadjikistan) (1999) New Phytologist, 143, pp. 131-142; Reich, P.B., Walters, M.B., Ellsworth, D.S., From tropics to tundra: Global convergence in plant functioning (1997) Proceedings of the National Academy of Sciences, 94, pp. 13730-13734; Roggatz, U., McDonald, J.S., Stadenberg, I., Schurr, U., Effects of nitrogen deprivation on cell division and expansion in leaves on Ricinus communis L (1999) Plant, Cell and Environment, 22, pp. 81-89; Shipley, B., Tradeoffs between net assimilation rate and specific leaf area in determining relative growth rate: The relationship with daily irradiance (2002) Functional Ecology, 16, pp. 682-689; Shipley, B., Lechowicz, M.J., The functional coordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland plant species (2000) E?coscience, 7, pp. 183-194; Smith, W.K., Bell, D.T., Shepherd, K.A., Associations between leaf structure, orientation, and sunlight exposure in five Western Australian communities (1998) American Journal of Botany, 85, pp. 56-63; van Arendonk, J.J.C.M., Niemann, G.J., Boon, J.J., Lambers, H., Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis-mass spectrometry (1997) Plant, Cell and Environment, 20, pp. 881-897; Van Der Werf, A., Visser, A.J., Schieving, F., Lambers, H., Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species (1993) Functional Ecology, 7, pp. 63-74; Walters, M.B., Kruger, E.L., Reich, P.B., Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: Species, light environment and ontogenetic considerations (1993) ?cologia, 96, pp. 219-231; Westoby, M., A leaf-height-seed (LHS) plant ecology strategy scheme (1998) Plant and Soil, 199, pp. 213-227. },
    ABSTRACT = { Specific leaf area (SLA) is a common variable in comparative plant ecology that is often measured on field-grown plants, yet SLA is known to be a plastic trait. The motivation for this study was therefore to determine the degree to which environmentally induced plasticity in SLA might obscure interspecific trends. Specifically, we tested the hypothesis that SLA is more responsive to nutrient stress at low irradiance than at high irradiance. To test this hypothesis we grew plants of six species of herbaceous Asteraceae in factorial combinations of 500, 250, and 125 ?mo1 m-2 s-1 irradiance and a full strength (1/1), a 1/5, and a 1/10 dilution of a modified Hoagland hydroponic solution. The full strength solution had 8 mM of nitrogen. Plants were harvested at 21, 28, 35, and 42 days from germination. SLA varied significantly between species, harvest dates, and experimental treatments. In general, SLA decreased with age, but more severely at low irradiance. SLA increased with decreasing irradiance. SLA also increased with increasing nutrient concentration, but this effect disappeared in the older plants at the higher irradiance. These trends were not seen in every species. Our hypothesis was supported: SLA is more responsive to nutrient stress at low irradiance, than at high irradiance, but the exact response is species-specific. Despite these environmentally induced changes in SLA at the intraspecific level, the interspecific differences were maintained across environments, justifying the use of SLA as a useful trait in comparative plant ecology. },
    KEYWORDS = { Asteraceae Comparative ecology SLA Specific leaf area comparative study intraspecific variation irradiance leaf area nutrient availability },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...