Shipley2004

Référence

Shipley, B. (2004) Analysing the allometry of multiple interacting traits. Perspectives in Plant Ecology, Evolution and Systematics, 6(4):235-241.

Résumé

Since form and function are tightly integrated in plants, and since plant attributes often scale allometrically, it follows that plant allometry is inherently multivariate. Unfortunately, traditional statistical methods for studying allometric relationships are very restrictive and do not allow one to model multivariate allometric patterns that follow realistic biological hypotheses. In this paper I describe a new statistical test ('d-sep test') that allows one to test, and potentially falsify, alternative multivariate orderings of cause-and-effect in the context of allometry.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { Shipley2004,
    AUTHOR = { Shipley, B. },
    TITLE = { Analysing the allometry of multiple interacting traits },
    JOURNAL = { Perspectives in Plant Ecology, Evolution and Systematics },
    YEAR = { 2004 },
    VOLUME = { 6 },
    PAGES = { 235-241 },
    NUMBER = { 4 },
    NOTE = { 14338319 (ISSN) Cited By (since 1996): 3 Export Date: 26 April 2007 Source: Scopus CODEN: PPEEF Language of Original Document: English Correspondence Address: Shipley, B.; De?partement de Biologie; Universite? de Sherbrooke Sherbrooke, Que. J1K 2R1, Canada; email: Bill.Shipley@USherbrooke.ca References: Geiger, D., Pearl, J., Logical and algorithmic properties of conditional independence and graphical models (1993) The Annals of Statistics, 21, pp. 2001-2021; Geiger, D., Verma, T., Pearl, J., Identifying independence in Bayesian Networks (1990) Networks, 20, pp. 507-534; Geiger, D., Paz, A., Pearl, J., Axioms and algorithms for inferences involving probabilistic independence (1991) Information and Computation, 91, pp. 128-141; Gould, S.J., Allometry and size in ontogeny and phylogeny (1966) Biological Reviews of the Cambridge Philosophical Society, 41, pp. 587-640; Grime, J.P., (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties, , John Wiley, New York; Huxley, J.S., (1972) Problems of Relative Growth, , Dover, New York; Jordano, P., Frugivore-mediated selection on fruit and seed size: Birds and St. Lucie's cherry (1995) Ecology, 76, pp. 2627-2639; Muller, I., Schmid, B., Weiner, J., The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants (2000) Perspectives in Plant Ecology, Evolution and Systematics, 3, pp. 115-127; Niklas, K.J., (1994) Plant Allometry. The Scaling of Form and Process, , University of Chicago Press, Chicago; Pearl, J., (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, , Morgan Kaufmann, San Mateo; Pearl, J., (2000) Causality, , Cambridge University Press, Cambridge; Peters, R.H., (1983) The Ecological Implications of Body Size, , Cambridge University Press, Cambridge; Royall, R., (1997) Statistical Evidence. A Likelihood Paradigm, , Chapman \& Hall, London; Shipley, B., Exploratory path analysis with applications in ecology and evolution (1997) The American Naturalist, 149, pp. 1113-1138; Shipley, B., Exploring hypothesis space: Examples from organismal biology (1999) Computation, Causation and Discovery, pp. 441-452. , eds. C Glymour \& GF Cooper, MIT/AAAI Press, Menlo Park; Shipley, B., (2000) Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations, and Causal Inference, , Oxford University Press, Oxford; Shipley, B., A new inferential test for path models based on directed acyclic graphs (2000) Structural Equation Modeling, 7, pp. 206-218; Shipley, B., Testing recursive path models with correlated errors using d-separation (2003) Structural Equation Modeling, 10, pp. 214-221. },
    ABSTRACT = { Since form and function are tightly integrated in plants, and since plant attributes often scale allometrically, it follows that plant allometry is inherently multivariate. Unfortunately, traditional statistical methods for studying allometric relationships are very restrictive and do not allow one to model multivariate allometric patterns that follow realistic biological hypotheses. In this paper I describe a new statistical test ('d-sep test') that allows one to test, and potentially falsify, alternative multivariate orderings of cause-and-effect in the context of allometry. },
    KEYWORDS = { Allometry Causal models Directed acyclic graphs Fruit production Graphical models Plant size Prunus mahaleb Seed dispersal allometry methodology multivariate analysis statistical analysis Prunus Prunus mahaleb },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...