RamosSt-OngeBlanchetEtAl2016

Référence

Ramos, Y., St-Onge, B., Blanchet, J.-P. and Smargiassi, A. (2016) Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches. Journal of Exposure Science and Environmental Epidemiology, 26(4):405-414. (URL )

Résumé

Air pollution is a major environmental and health problem, especially in urban agglomerations. Estimating personal exposure to fine particulate matter (PM2.5) remains a great challenge because it requires numerous point measurements to explain the daily spatial variation in pollutant levels. Furthermore, meteorological variables have considerable effects on the dispersion and distribution of pollutants, which also depends on spatio-temporal emission patterns. In this study we developed a hybrid interpolation technique that combined the inverse distance-weighted (IDW) method with Kriging with external drift (KED), and applied it to daily PM2.5 levels observed at 10 monitoring stations. This provided us with downscaled high-resolution maps of PM2.5 for the Island of Montreal. For the KED interpolation, we used spatio-temporal daily meteorological estimates and spatial covariates as land use and vegetation density. Different KED and IDW daily estimation models for the year 2010 were developed for each of the six synoptic weather classes. These clusters were developed using principal component analysis and unsupervised hierarchical classification. The results of the interpolation models were assessed with a leave-one-station-out cross-validation. The performance of the hybrid model was better than that of the KED or the IDW alone for all six synoptic weather classes (the daily estimate for R2 was 0.66-0.93 and for root mean square error (RMSE) 2.54-1.89[thinsp][mu]g/m3).

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { RamosSt-OngeBlanchetEtAl2016,
    AUTHOR = { Ramos, Y. and St-Onge, B. and Blanchet, J.-P. and Smargiassi, A. },
    TITLE = { Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches },
    JOURNAL = { Journal of Exposure Science and Environmental Epidemiology },
    YEAR = { 2016 },
    VOLUME = { 26 },
    PAGES = { 405-414 },
    NUMBER = { 4 },
    MONTH = { jun },
    ABSTRACT = { Air pollution is a major environmental and health problem, especially in urban agglomerations. Estimating personal exposure to fine particulate matter (PM2.5) remains a great challenge because it requires numerous point measurements to explain the daily spatial variation in pollutant levels. Furthermore, meteorological variables have considerable effects on the dispersion and distribution of pollutants, which also depends on spatio-temporal emission patterns. In this study we developed a hybrid interpolation technique that combined the inverse distance-weighted (IDW) method with Kriging with external drift (KED), and applied it to daily PM2.5 levels observed at 10 monitoring stations. This provided us with downscaled high-resolution maps of PM2.5 for the Island of Montreal. For the KED interpolation, we used spatio-temporal daily meteorological estimates and spatial covariates as land use and vegetation density. Different KED and IDW daily estimation models for the year 2010 were developed for each of the six synoptic weather classes. These clusters were developed using principal component analysis and unsupervised hierarchical classification. The results of the interpolation models were assessed with a leave-one-station-out cross-validation. The performance of the hybrid model was better than that of the KED or the IDW alone for all six synoptic weather classes (the daily estimate for R2 was 0.66-0.93 and for root mean square error (RMSE) 2.54-1.89[thinsp][mu]g/m3). },
    ISSN = { 1559-0631 },
    KEYWORDS = { air pollution, fine particulate matter, interpolation, inverse distance weighted, kriging with external drift },
    OWNER = { Luc },
    PUBLISHER = { Nature America, Inc. },
    TIMESTAMP = { 2016.08.15 },
    URL = { http://dx.doi.org/10.1038/jes.2015.79 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...