ChenHaySt-Onge2012

Référence

Chen, G., Hay, G.J. and St-Onge, B. (2012) A GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: A case study in Quebec, Canada. International Journal of Applied Earth Observation and Geoinformation, 15:28-37. (URL )

Résumé

The GEOgraphic Object-Based Image Analysis (GEOBIA) paradigm continues to prove its efficacy in remote sensing image analysis by providing tools which emulate human perception and combine analyst's experience with meaningful image-objects. However, challenges remain in the evolution of this new paradigm as sophisticated methods attempt to deliver on the goal of automated geo-intelligence (i.e., geospatial content within context) from geospatial sources. In order to generate geo-intelligence from a forest scene, this article introduces a GEOBIA framework to estimate canopy height, above-ground biomass (AGB) and volume by combining lidar (light detection and ranging) transects, Quickbird imagery and machine learning algorithms. This framework is comprised three main components: (i) image-object extraction, (ii) lidar transect selection, and (iii) forest parameter generalization. The rational for integrating these methods is to provide a semi-automatic GEOBIA approach from which detailed forest information is obtained at the individual tree crown or small tree cluster level (i.e., mean object size of 0.04 ha); while also dramatically reducing airborne lidar data acquisition costs. Analysis is performed over a 16,330 ha forested study site in Quebec, Canada. Forest parameter estimation results derived from our GEOBIA framework demonstrate a strong relationship with those using the full lidar cover; where the highest estimates for canopy height (R = 0.85; RMSE = 3.37 m), AGB (R = 0.85; RMSE = 39.48 Mg/ha) and volume (R = 0.85; RMSE = 52.59 m3/ha) were achieved using a lidar transect sample representing only 7.6% of the total study area.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { ChenHaySt-Onge2012,
    AUTHOR = { Chen, G. and Hay, G.J. and St-Onge, B. },
    TITLE = { A GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: A case study in Quebec, Canada },
    JOURNAL = { International Journal of Applied Earth Observation and Geoinformation },
    YEAR = { 2012 },
    VOLUME = { 15 },
    PAGES = { 28-37 },
    ABSTRACT = { The GEOgraphic Object-Based Image Analysis (GEOBIA) paradigm continues to prove its efficacy in remote sensing image analysis by providing tools which emulate human perception and combine analyst's experience with meaningful image-objects. However, challenges remain in the evolution of this new paradigm as sophisticated methods attempt to deliver on the goal of automated geo-intelligence (i.e., geospatial content within context) from geospatial sources. In order to generate geo-intelligence from a forest scene, this article introduces a GEOBIA framework to estimate canopy height, above-ground biomass (AGB) and volume by combining lidar (light detection and ranging) transects, Quickbird imagery and machine learning algorithms. This framework is comprised three main components: (i) image-object extraction, (ii) lidar transect selection, and (iii) forest parameter generalization. The rational for integrating these methods is to provide a semi-automatic GEOBIA approach from which detailed forest information is obtained at the individual tree crown or small tree cluster level (i.e., mean object size of 0.04 ha); while also dramatically reducing airborne lidar data acquisition costs. Analysis is performed over a 16,330 ha forested study site in Quebec, Canada. Forest parameter estimation results derived from our GEOBIA framework demonstrate a strong relationship with those using the full lidar cover; where the highest estimates for canopy height (R = 0.85; RMSE = 3.37 m), AGB (R = 0.85; RMSE = 39.48 Mg/ha) and volume (R = 0.85; RMSE = 52.59 m3/ha) were achieved using a lidar transect sample representing only 7.6% of the total study area. },
    DOI = { 10.1016/j.jag.2011.05.010 },
    ISSN = { 0303-2434 },
    KEYWORDS = { GEOBIA },
    OWNER = { amriv2 },
    TIMESTAMP = { 2012.08.06 },
    URL = { http://www.sciencedirect.com/science/article/pii/S0303243411000730 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...