HayBlaschkeMarceauEtAl2003

Référence

Hay, G.J., Blaschke, T., Marceau, D.J., Bouchard, A. (2003) A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing, 57(5-6):327-345.

Résumé

Within the conceptual framework of Complex Systems, we discuss the importance and challenges in extracting and linking multiscale objects from high-resolution remote sensing imagery to improve the monitoring, modeling and management of complex landscapes. In particular, we emphasize that remote sensing data are a particular case of the modifiable areal unit problem (MAUP) and describe how image-objects provide a way to reduce this problem. We then hypothesize that multiscale analysis should be guided by the intrinsic scale of the dominant landscape objects composing a scene and describe three different multiscale image-processing techniques with the potential to achieve this. Each of these techniques, i.e., Fractal Net Evolution Approach (FNEA), Linear Scale-Space and Blob-Feature Detection (SS), and Multiscale Object-Specific Analysis (MOSA), facilitates the multiscale pattern analysis, exploration and hierarchical linking of image-objects based on methods that derive spatially explicit multiscale contextual information from a single resolution of remote sensing imagery. We then outline the weaknesses and strengths of each technique and provide strategies for their improvement. © 2003 Elsevier Science B.V. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { HayBlaschkeMarceauEtAl2003,
    AUTHOR = { Hay, G.J. and Blaschke, T. and Marceau, D.J. and Bouchard, A. },
    TITLE = { A comparison of three image-object methods for the multiscale analysis of landscape structure },
    JOURNAL = { ISPRS Journal of Photogrammetry and Remote Sensing },
    YEAR = { 2003 },
    VOLUME = { 57 },
    PAGES = { 327-345 },
    NUMBER = { 5-6 },
    NOTE = { 09242716 (ISSN) Cited By (since 1996): 19 Export Date: 26 April 2007 Source: Scopus CODEN: IRSEE Language of Original Document: English Correspondence Address: Hay, G.J.; Geocomputing Laboratory; De?pt. de Ge?ographie; Universite? de Montre?al; C.P. 6128, Succursale Centre-Ville Montreal, Que. H3C 3J, Canada; email: ghay@sympatico.ca References: Allen, T.F.H., Starr, T.B., (1982) Hierarchy Perspective for Ecological Complexity, , University of Chicago Press, Chicago, 310 pp; Baatz, M., Scha?pe, A., Multiresolution segmentation: An optimization approach for high quality multiscale image segmentation (2000) Angewandte Geogr. Informationsverarbeitung, 12, pp. 12-23. , Strobl, J., Blaschke, T. (Eds.). Wichmann, Heidelberg; Beucher, S., Lantue?joul, C., Use of watersheds in contour detection (1979) Int. Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, 132. , Rennes, France, 17-21 September. CCETT/IRISA (Centre commun d'e?tudes de te?le?diffusion et te?le?communications/Institut de recherche en informatique et syste?mes ale?atoires), 2.1-2.12; Biederman, I., Recognition-by-components: A theory of human image understanding (1987) Psychological Review, 94 (2), pp. 115-147; Blaschke, T., Hay, G.J., Object-oriented image analysis and scale-space: Theory and methods for modeling and evaluating multiscale landscape structure (2001) International Archives of Photogrammetry and Remote Sensing, 34 (PART 4W5), pp. 22-29; Blaschke, T., Strobl, J., What's wrong with pixels? Some recent developments interfacing remote sensing and GIS (2001) GIS-Zeitschrift fu?r Geoinformationssysteme, (6), pp. 12-17; Blaschke, T., Lang, S., Lorup, E., Strobl, J., Zeil, P., Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications (2000) Environmental Information for Planning, Politics and the Public, 2, pp. 555-570. , Cremers, A., Greve, K. (Eds.), Metropolis Verlag, Marburg; Blaschke, T., Conradi, M., Lang, S., Multi-scale image analysis for ecological monitoring of heterogeneous, small structured landscapes (2001) Proceedings of SPIE, 4545, pp. 35-44; Bobick, A., Bolles, R., The representation space paradigm of concurrent evolving object descriptions (1992) IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), pp. 146-156; Canny, J., A computational approach to edge detection (1986) IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (6), pp. 679-697; Chaudhuri, B., Sarkar, N., Texture segmentation using fractal dimension (1995) IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1), pp. 72-77; (2002), www.definiens-imaging.com; Foley, J.D., Van Dam, A., (1982) Fundamentals of Interactive Computer Graphics, , Addison-Wesley, Reading, MA, 664 pp; Foody, G., Image classification with a neural network: From completely-crisp to fully-fuzzy situations (1999) Advances in Remote Sensing and GIS Analysis, pp. 17-37. , Atkinson, P.M., Tate, N.J. (Eds.). Wiley, Chichester; Forman, R.T.T., (1995) Land Mosaics: The Ecology of Landscapes and Regions, , Cambridge Univ. Press, Cambridge, 632 pp; Fotheringham, A.S., Wong, D.W.S., The modifiable areal unit problem in multivariate statistical analysis (1991) Environment and Planning A, 23, pp. 1025-1044; Haralick, R.M., Stemberg, S.R., Zhuang, X., Image analysis using mathematical morphology (1987) IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (4), pp. 532-550; Hay, G.J., Marceau, D.J., Are image-objects the key for upscaling remotely sensed data? (1998) Proceedings of Modelling of Complex Systems, pp. 88-92. , July 12-17, New Orleans, USA; Hay, G.J., Niemann, K.O., Visualizing 3-D texture: A three-dimensional structural approach to model forest texture (1994) Canadian Journal of Remote Sensing, 20 (2), pp. 90-101; Hay, G.J., Niemann, K.O., McLean, G., An object-specific image-texture analysis of H-resolution forest imagery (1996) Remote Sensing of Environment, 55 (2), pp. 108-122; Hay, G.J., Niemann, K.O., Goodenough, D.G., Spatial thresholds, image-objects and upscaling: A multi-scale evaluation (1997) Remote Sensing of Environment, 62 (1), pp. 1-19; Hay, G.J., Marceau, D.J., Dube?, P., Bouchard, A., A multiscale framework for landscape analysis: Object-specific analysis and upscaling (2001) Landscape Ecology, 16 (6), pp. 471-490; Hay, G.J., Dube?, P., Bouchard, A., Marceau, D.J., A scale-space primer for exploring and quantifying complex landscapes (2002) Ecological Modelling, 153 (1-2), pp. 27-49; Hay, G.J., Marceau, D.J., Bouchard, A., Modelling multiscale landscape structure within a hierarchical scale-space framework (2002) International Archives of Photogrammetry and Remote Sensing, 34 (PART 4), pp. 532-536; (2002) IDL (Interactive Data Language), , www.rsinc.com; Ja?hne, B., A multiresolution signal representation (1999) Handbook on Computer Vision and Applications, pp. 67-90. , Ja?hne, B., Haußecker, H., Geißler, P. (Eds.). Academic Press, Boston, USA; Koenderink, J.J., The structure of images (1984) Biological Cybernetics, 50 (5), pp. 363-370; Levin, S.A., (1999) Fragile Dominions: Complexity and the Commons, , Perseus Books, Reading, 250 pp; Lindeberg, T., (1994) Scale-Space Theory in Computer Vision, , Kluwer Academic Publishing, Dordrecht, The Netherlands, 423 pp; Marceau, D.J., The scale issue in the social and natural sciences (1999) Canadian Journal of Remote Sensing, 25 (4), pp. 347-356; Marceau, D.J., Hay, G.J., Contributions of remote sensing to the scale issues (1999) Canadian Journal of Remote Sensing, 25 (4), pp. 357-366; Marceau, D.J., Howarth, P.J., Gratton, D.J., Remote sensing and the measurement of geographical entities in a forested environment: Part 1. The scale and spatial aggregation problem (1994) Remote Sensing of Environment, 49 (2), pp. 93-104; Meyer, F., Beucher, S., Morphological segmentation (1990) Journal of Visual Communication and Image Representation, 1 (1), pp. 21-46; O'Neill, R.V., King, A.W., Homage to St. Michael; or, why are there so many books on scale? (1997) Ecological Scale Theory and Applications. (Complexity in Ecological Systems Series), pp. 3-15. , Peterson, D.L., Parker, V.T. (Eds.). Columbia Univ. Press, New York, NY; Openshaw, S., The modifiable areal unit problem (1981) Quantitative Geography: A British View, pp. 60-69. , Wrigley, N., Bennett, R.J. (Eds.). Routledge and Kegan Paul, London; Openshaw, S., The modifiable areal unit problem (1984) Concepts and Techniques in Modern Geography (CATMOG), 38. , Geo Books, Norwich. 40 pp; Openshaw, S., Taylor, P., A million or so correlation coefficients: Three experiments on the modifiable areal unit problem (1979) Statistical Applications in the Spatial Sciences, pp. 127-144. , Wrigley, N. (Ed.). Pion, London; Robert, C.P., (2001) The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, , Springer Verlag, New York, 624 pp; Rowe, J.S., The level-of-integration concept and ecology (1961) Ecology, 42 (2), pp. 420-427; Salari, E., Ling, Z., Texture segmentation using hierarchical wavelet decomposition (1995) Pattern Recognition, 28 (12), pp. 1819-1824; Schiewe, J., Tufte, L., Ehlers, M., Potential and problems of multiscale segmentation methods in remote sensing (2001) GIS-Zeitschrift fu?r Geoinformationssysteme, (6), pp. 34-39; Settle, J.J., Drake, N.A., Linear mixing and the estimation of ground cover proportions (1993) International Journal of Remote Sensing, 14 (6), pp. 1159-1177; Simon, H.A., The architecture of complexity (1962) Proceedings of the American Philosophical Society, 106, pp. 467-482; Skidmore, A., The role of remote sensing in natural resource management (1999) International Archives of Photogrammetry and Remote Sensing, 32 (PART 7C2), pp. 5-11; Ter Haar Romeny, B.M., Florack, L.M.J., Front-end vision, a multiscale geometry engine (2000) Proc. First IEEE International Workshop on Biologically Motivated Computer Vision (BMCV2000), pp. 297-307. , May 15-17, Seoul, Korea. Lecture Notes in Computer Science, vol. 1811. Springer Verlag, Heidelberg; Tobler, W., A computer movie simulating urban growth in the Detroit region (1970) Economic Geography, 46 (2), pp. 234-240; Wang, F., Improving remote sensing image analysis through fuzzy information representation (1990) Photogrammetric Engineering and Remote Sensing, 56 (8), pp. 1163-1169; Weickert, J., Ishikawa, S., Imiya, A., On the history of Gaussian scale-space axiomatics (1997) Gaussian Scale-Space Theory, pp. 45-59. , Sporting, J., Nielsen, M., Florack, L., Johansen, P. (Eds.). Kluwer Academic Publishing, Dordrecht, The Netherlands; Wessman, C.A., Spatial scales and global change: Bridging the gap from plots to GCM grid cells (1992) Annual Review of Ecological Systems, 23, pp. 175-200; Wiens, J.A., Spatial scaling in ecology (1989) Functional Ecology, 3 (4), pp. 385-397; Woodcock, C.E., Strahler, A.H., The factor of scale in remote sensing (1987) Remote Sensing of Environment, 21 (3), pp. 311-332; Wu, J., Hierarchy and scaling: Extrapolating information along a scaling ladder (1999) Canadian Journal of Remote Sensing, 25 (4), pp. 367-380; Wu, J., Marceau, D., Modelling complex ecological systems: An introduction (2002) Ecological Modelling, 153 (1-2), pp. 1-6. },
    ABSTRACT = { Within the conceptual framework of Complex Systems, we discuss the importance and challenges in extracting and linking multiscale objects from high-resolution remote sensing imagery to improve the monitoring, modeling and management of complex landscapes. In particular, we emphasize that remote sensing data are a particular case of the modifiable areal unit problem (MAUP) and describe how image-objects provide a way to reduce this problem. We then hypothesize that multiscale analysis should be guided by the intrinsic scale of the dominant landscape objects composing a scene and describe three different multiscale image-processing techniques with the potential to achieve this. Each of these techniques, i.e., Fractal Net Evolution Approach (FNEA), Linear Scale-Space and Blob-Feature Detection (SS), and Multiscale Object-Specific Analysis (MOSA), facilitates the multiscale pattern analysis, exploration and hierarchical linking of image-objects based on methods that derive spatially explicit multiscale contextual information from a single resolution of remote sensing imagery. We then outline the weaknesses and strengths of each technique and provide strategies for their improvement. © 2003 Elsevier Science B.V. All rights reserved. },
    KEYWORDS = { Complex systems theory Fractal net evolution approach Image-objects Multiscale object-specific analysis Image analysis Image sensors Large scale systems Multiscale analysis Remote sensing image analysis landscape structure remote sensing },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.04 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...