Adde2020

Référence

Adde, A. (2020) Modélisation de la distribution et de l’abondance de la sauvagine au Canada. Thèse de doctorat, Université Laval. (URL )

Résumé

Canadian waterfowl benefit from some of the longest and most spatially extensive wildlife monitoring initiatives worldwide. The annual Waterfowl Breeding Population and Habitat Survey in particular, initiated in 1955 for estimating annual continental population sizes and setting hunting quotas, now covers more than 3 million square kilometres of breeding habitats, from the northern United States to the Arctic and from the Atlantic coast to Alaska. The exceptional dimensions of these data have historically contributed to the successful achievement of waterfowl population management goals and to a better understanding of the ecology of these species. However, inventories’ records are spatially discrete (aerial segments, helicopter plots or water bodies) and their geographic coverage remains small when compared to the area of Canada (≈1% of 10 million square kilometres). In order to be effective, conservation planning requires spatially-continuous, quantitative information on species distribution and abundance. This is a common application of species distribution models which, by predicting the distribution and abundance of individuals from occurrence data and environmental covariates, can provide continuous geospatial information. While such models already exist for Canadian waterfowl, identified deficiencies in the methodological approaches, geographic coverage orenvironmental themes explored by existing attempts suggest that significant improvements or extensions could be made. This is the overall objective of this thesis: to develop a new generation of models to predict waterfowl distribution and abundance across Canada in order to assist the spatial planning of conservation measures for species and their habitats. In the first chapter, a literature review was conducted with the specific objective of identifying environmental covariates of interest for waterfowl modeling. The main contribution of this study was the creation of a database gathering 533 duck-habitat associations attributable to 133 covariates, which will assist in the development of future models. In the second chapter, the objective was to refine existing national waterfowl models by developing new, more interpretable models that explicitly account for spatiotemporal variations in abundances, while testing for unexplored waterfowl-habitat associations by using a set of 232 newly-available candidate covariates. For this purpose, we developed a method combining machine learning techniques, covariate selection procedures and hierarchical Bayesian approaches. The main contribution of this study was the provision of annual abundance maps of 18 waterfowl species for the period 1990-2015. In the third chapter, the objective was to assess the potential of integrating standardized inventory and citizen science data to model waterfowl distribution across the Canadian western boreal forest. The main contribution of this chapter was the formalisation of an integrated species distribution modelling approach, which was based on a state-space point process framework. We demonstrated the ability of this approach to efficiently combine heterogeneous occurrence datasets in order to benefit from the complementarity of their records and spatial coverages. In the fourth chapter, the objective was to assess the potential effects of climate change on the distribution and abundance of waterfowl in Eastern Canada. Results showed that climate change could have a positive effect on the abundance of 7/12 of the species evaluated, while 5/12 could decline. A major contribution of this study was the development of spatially-explicit future climate suitability indices for each of the 12 species. Overall, results from this thesis have allowed to (i) deepen and synthesize the state of knowledge on the ecology of Canadian waterfowl, (ii) provide new data to guide conservation measures, and (iii) develop innovative and efficient methods to model large-scale species distribution and abundance. The more than 1,000 maps and raster layers made publicly available constitute a major contribution for the development of biodiversity indicators, the evaluation and execution of conservation planning strategies, and ecosystem services monitoring.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@PHDTHESIS { Adde2020,
    TITLE = { Modélisation de la distribution et de l’abondance de la sauvagine au Canada },
    AUTHOR = { Adde, A. },
    SCHOOL = { Université Laval },
    YEAR = { 2020 },
    NOTE = { CEFTMS, Darveau, M. and Cumming, S.G. },
    ABSTRACT = { Canadian waterfowl benefit from some of the longest and most spatially extensive wildlife monitoring initiatives worldwide. The annual Waterfowl Breeding Population and Habitat Survey in particular, initiated in 1955 for estimating annual continental population sizes and setting hunting quotas, now covers more than 3 million square kilometres of breeding habitats, from the northern United States to the Arctic and from the Atlantic coast to Alaska. The exceptional dimensions of these data have historically contributed to the successful achievement of waterfowl population management goals and to a better understanding of the ecology of these species. However, inventories’ records are spatially discrete (aerial segments, helicopter plots or water bodies) and their geographic coverage remains small when compared to the area of Canada (≈1% of 10 million square kilometres). In order to be effective, conservation planning requires spatially-continuous, quantitative information on species distribution and abundance. This is a common application of species distribution models which, by predicting the distribution and abundance of individuals from occurrence data and environmental covariates, can provide continuous geospatial information. While such models already exist for Canadian waterfowl, identified deficiencies in the methodological approaches, geographic coverage orenvironmental themes explored by existing attempts suggest that significant improvements or extensions could be made. This is the overall objective of this thesis: to develop a new generation of models to predict waterfowl distribution and abundance across Canada in order to assist the spatial planning of conservation measures for species and their habitats. In the first chapter, a literature review was conducted with the specific objective of identifying environmental covariates of interest for waterfowl modeling. The main contribution of this study was the creation of a database gathering 533 duck-habitat associations attributable to 133 covariates, which will assist in the development of future models. In the second chapter, the objective was to refine existing national waterfowl models by developing new, more interpretable models that explicitly account for spatiotemporal variations in abundances, while testing for unexplored waterfowl-habitat associations by using a set of 232 newly-available candidate covariates. For this purpose, we developed a method combining machine learning techniques, covariate selection procedures and hierarchical Bayesian approaches. The main contribution of this study was the provision of annual abundance maps of 18 waterfowl species for the period 1990-2015. In the third chapter, the objective was to assess the potential of integrating standardized inventory and citizen science data to model waterfowl distribution across the Canadian western boreal forest. The main contribution of this chapter was the formalisation of an integrated species distribution modelling approach, which was based on a state-space point process framework. We demonstrated the ability of this approach to efficiently combine heterogeneous occurrence datasets in order to benefit from the complementarity of their records and spatial coverages. In the fourth chapter, the objective was to assess the potential effects of climate change on the distribution and abundance of waterfowl in Eastern Canada. Results showed that climate change could have a positive effect on the abundance of 7/12 of the species evaluated, while 5/12 could decline. A major contribution of this study was the development of spatially-explicit future climate suitability indices for each of the 12 species. Overall, results from this thesis have allowed to (i) deepen and synthesize the state of knowledge on the ecology of Canadian waterfowl, (ii) provide new data to guide conservation measures, and (iii) develop innovative and efficient methods to model large-scale species distribution and abundance. The more than 1,000 maps and raster layers made publicly available constitute a major contribution for the development of biodiversity indicators, the evaluation and execution of conservation planning strategies, and ecosystem services monitoring. },
    URL = { https://corpus.ulaval.ca/jspui/handle/20.500.11794/67508 },
    TIMESTAMP = { 2021-02-16 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Le CEF est un
regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Chenilles espionnes ****************** **********************************************************

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Septembre 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

  • Voici une liste (clairement incomplète) des packages R axés sur l'écologie! N'hésitez pas à ajouter à la liste

Voir les autres...