PatelKatanPerezEtAl2021

Référence

Patel, J., Katan, J., Perez, L., Sengupta, R. (2021) Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees. Transactions in GIS, 25(3):1176-1192. (URL )

Résumé

Abstract We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour-selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent-rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent-based model to provide a data-driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data-fusion techniques.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { PatelKatanPerezEtAl2021,
    AUTHOR = { Patel, J. and Katan, J. and Perez, L. and Sengupta, R. },
    JOURNAL = { Transactions in GIS },
    TITLE = { Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees },
    YEAR = { 2021 },
    NUMBER = { 3 },
    PAGES = { 1176-1192 },
    VOLUME = { 25 },
    ABSTRACT = { Abstract We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour-selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent-rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent-based model to provide a data-driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data-fusion techniques. },
    DOI = { https://doi.org/10.1111/tgis.12770 },
    EPRINT = { https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12770 },
    URL = { https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12770 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Le CEF est un
regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Colloque du CEF ****************** **********************************************************

********************************************************** ***************** Pub - Colloque NAFEW ****************** **********************************************************

********************************************************** ***************** Pub - Colloque NAFEW ****************** **********************************************************

********************************************************** ***************** Pub - NADEF 2022 ****************** **********************************************************

15 au 25 Juin à la FERLD
Inscriptions ouvertes 

********************************************************** *************** Pub - Colloque Mycorhize ***************** **********************************************************

********************************************************** ********* Mémoire CEF Changements Climatiques ************ **********************************************************

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

  • Voici une liste (clairement incomplète) des packages R axés sur l'écologie! N'hésitez pas à ajouter à la liste

Voir les autres...